找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
61#
發(fā)表于 2025-4-1 02:08:16 | 只看該作者
62#
發(fā)表于 2025-4-1 07:55:37 | 只看該作者
Jennifer Renoux,Uwe K?ckemann,Amy Loutfi) Cross-Model feature Mixup, which learns similarities between embeddings obtained from current and old models of the mixed sample and the original images, facilitating cross-task class contrast learning and old knowledge retrieval. We evaluate the effectiveness of CroMo-Mixup to improve both Task-I
63#
發(fā)表于 2025-4-1 12:42:43 | 只看該作者
64#
發(fā)表于 2025-4-1 17:00:34 | 只看該作者
65#
發(fā)表于 2025-4-1 22:33:16 | 只看該作者
,SAVE: Protagonist Diversification with?,tructure ,gnostic ,ideo ,diting, Accordingly, tasks such as modifying the object or changing the style in a video have been possible. However, previous works usually work well on trivial and consistent shapes, and easily collapse on a difficult target that has a largely different body shape from the original one. In this paper, we
66#
發(fā)表于 2025-4-1 23:46:59 | 只看該作者
,: Long-Form Video Understanding with?Large Language Model as?Agent,sequences. Motivated by the human cognitive process for long-form video understanding, we emphasize interactive reasoning and planning over the ability to process lengthy visual inputs. We introduce a novel agent-based system, ., that employs a large language model as a central agent?to iteratively
67#
發(fā)表于 2025-4-2 06:13:17 | 只看該作者
,Meta-optimized Angular Margin Contrastive Framework for?Video-Language Representation Learning,ta typically do not align perfectly with each other, which might lead to video-language representations that do not accurately reflect cross-modal semantics. Moreover, previous data also possess an uneven distribution of concepts, thereby hampering the downstream performance across unpopular subject
68#
發(fā)表于 2025-4-2 09:18:56 | 只看該作者
Source-Free Domain-Invariant Performance Prediction,data distributions. Most existing performance prediction methods heavily rely on the source data in their estimation process, limiting their applicability in a more realistic setting where only the trained model is accessible. The few methods that do not require source data exhibit considerably infe
69#
發(fā)表于 2025-4-2 14:06:15 | 只看該作者
,Improving Robustness to?Model Inversion Attacks via?Sparse Coding Architectures,tedly querying the network. In this work, we develop a novel network architecture that leverages sparse-coding layers to obtain superior robustness to this class of attacks. Three decades of computer science research has studied sparse coding in the context of image denoising, object recognition, an
70#
發(fā)表于 2025-4-2 15:48:45 | 只看該作者
,Constructing Concept-Based Models to?Mitigate Spurious Correlations with?Minimal Human Effort,n provide a principled way of disclosing and guiding model behaviors through human-understandable concepts, albeit at a high cost of human efforts in data annotation. In this paper, we leverage a synergy of multiple foundation models to construct CBMs with nearly no human effort. We discover undesir
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 17:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潜山县| 无极县| 阳东县| 五峰| 临洮县| 离岛区| 桃江县| 梨树县| 曲周县| 剑河县| 沅江市| 遂宁市| 拉萨市| 南昌市| 邓州市| 宜兰市| 蚌埠市| 瑞金市| 皋兰县| 衡南县| 榆林市| 张家川| 六盘水市| 乌拉特后旗| 蓝山县| 湘潭市| 鹿邑县| 桐梓县| 拉萨市| 黔江区| 天水市| 晋中市| 福建省| 平潭县| 富锦市| 樟树市| 徐闻县| 西平县| 章丘市| 新巴尔虎右旗| 武宁县|