找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復制鏈接]
樓主: 桌前不可入
41#
發(fā)表于 2025-3-28 17:49:41 | 只看該作者
,Sequential Representation Learning via?Static-Dynamic Conditional Disentanglement,to the introduction of a novel theoretically grounded disentanglement constraint that can be directly and efficiently incorporated into our new framework. The experiments show that the proposed approach outperforms previous complex state-of-the-art techniques in scenarios where the dynamics of a scene are influenced by its content.
42#
發(fā)表于 2025-3-28 22:25:05 | 只看該作者
,Diverse Text-to-3D Synthesis with?Augmented Text Embedding,ose to use augmented text prompts via textual inversion of reference images to diversify the joint generation.?We show that our method leads to improved diversity in text-to-3D synthesis qualitatively and quantitatively. Project page:
43#
發(fā)表于 2025-3-29 01:24:06 | 只看該作者
44#
發(fā)表于 2025-3-29 05:22:04 | 只看該作者
,Affective Visual Dialog: A Large-Scale Benchmark for?Emotional Reasoning Based on?Visually Groundedponse to visually grounded conversations. The task involves three skills: (1) Dialog-based Question Answering (2) Dialog-based Emotion Prediction and (3) Affective explanation generation based on the dialog. Our key contribution is the collection of a large-scale dataset, dubbed AffectVisDial, consi
45#
發(fā)表于 2025-3-29 07:46:25 | 只看該作者
,Watching it in?Dark: A Target-Aware Representation Learning Framework for?High-Level Vision Tasks i issue through either image-level enhancement or feature-level adaptation, they often focus solely on the image itself, ignoring how the task-relevant target varies along with different illumination. In this paper, we propose a target-aware representation learning framework designed to improve high-
46#
發(fā)表于 2025-3-29 13:55:25 | 只看該作者
47#
發(fā)表于 2025-3-29 19:37:10 | 只看該作者
,OP-Align: Object-Level and?Part-Level Alignment for?Self-supervised Category-Level Articulated Objeignificance, this task remains challenging due to the varying shapes and poses of objects, expensive dataset annotation costs, and complex real-world environments. In this paper, we propose a novel self-supervised approach that leverages a single-frame point cloud to solve this task. Our model consi
48#
發(fā)表于 2025-3-29 21:40:12 | 只看該作者
,BAFFLE: A Baseline of?Backpropagation-Free Federated Learning,ising framework with practical applications, but its standard training paradigm requires the clients to backpropagate through the model to compute gradients. Since these clients are typically edge devices and not fully trusted, executing backpropagation on them incurs computational and storage overh
49#
發(fā)表于 2025-3-30 01:32:39 | 只看該作者
50#
發(fā)表于 2025-3-30 07:48:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
澎湖县| 长丰县| 泾川县| 鄄城县| 威宁| 安图县| 高阳县| 浮梁县| 海安县| 卓资县| 邮箱| 日照市| 泽州县| 子长县| 定兴县| 奉节县| 缙云县| 肥西县| 江门市| 成安县| 璧山县| 壶关县| 新邵县| 民丰县| 罗源县| 宾川县| 巴彦淖尔市| 泰安市| 泸西县| 霞浦县| 黎平县| 紫云| 收藏| 吴江市| 八宿县| 井冈山市| 周至县| 南江县| 南和县| 拉萨市| 遵化市|