找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 呻吟
31#
發(fā)表于 2025-3-26 20:57:17 | 只看該作者
,LTRL: Boosting Long-Tail Recognition via?Reflective Learning, are lightweight enough to plug?and play with existing long-tail learning methods, achieving state-of-the-art performance in popular long-tail visual benchmarks. The experimental results highlight the great potential of reflecting learning in dealing with long-tail recognition. The code will?be available at ..
32#
發(fā)表于 2025-3-27 03:24:58 | 只看該作者
33#
發(fā)表于 2025-3-27 08:30:53 | 只看該作者
34#
發(fā)表于 2025-3-27 11:02:58 | 只看該作者
35#
發(fā)表于 2025-3-27 14:19:21 | 只看該作者
Analyse und Interpretation der Ergebnisseons and high dynamic range which?are well-suited for correspondence tasks such as optical flow and?point tracking. However, so far there is still a lack of comprehensive benchmarks for correspondence tasks with both event data and images. To fill this gap, we propose ., a large-scale?and diverse ben
36#
發(fā)表于 2025-3-27 18:25:07 | 只看該作者
https://doi.org/10.1007/978-3-642-72495-4 controllability of anomaly synthesis, particularly for weak defects that are very similar to normal regions. In this paper, we propose Global and Local Anomaly co-Synthesis Strategy (GLASS), a novel unified framework designed to synthesize a broader coverage of anomalies under the manifold and hype
37#
發(fā)表于 2025-3-28 01:52:32 | 只看該作者
38#
發(fā)表于 2025-3-28 04:50:18 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:14 | 只看該作者
https://doi.org/10.1007/978-3-642-72495-4ey do not address the issues of sufficient target interaction and efficient parallel processing simultaneously, thereby constraining the learning of dynamic, target-aware features. To tackle these limitations, this paper proposes a spatial-temporal multi-level association framework, which jointly as
40#
發(fā)表于 2025-3-28 11:03:33 | 只看該作者
https://doi.org/10.1007/978-3-642-72495-4ate on high-resolution images (.., 8 megapixels) to capture the fine details. However, this comes at the cost of considerable computational complexity, hindering the deployment in latency-sensitive scenarios. In this paper, we introduce ., a novel approach that enhances . predictions with . refineme
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃北| 宝兴县| 琼结县| 旅游| 诸城市| 文昌市| 台中县| 泰顺县| 太和县| 巢湖市| 犍为县| 密山市| 堆龙德庆县| 嘉兴市| 罗江县| 辽宁省| 嘉黎县| 青冈县| 客服| 大渡口区| 济阳县| 咸丰县| 武强县| 德令哈市| 九江县| 江西省| 青铜峡市| 汉阴县| 南安市| 同仁县| 乌拉特中旗| 定安县| 山丹县| 新兴县| 阳原县| 云梦县| 梧州市| 榕江县| 若羌县| 且末县| 金堂县|