找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Hermit
51#
發(fā)表于 2025-3-30 08:22:06 | 只看該作者
,Diffusion Models as?Optimizers for?Efficient Planning in?Offline RL,hieve more efficient planning without sacrificing capability. To evaluate the effectiveness and efficiency of the Trajectory Diffuser, we conduct experiments on the D4RL benchmarks. The results demonstrate that our method achieves .-. faster inference speed compared to previous sequence modeling met
52#
發(fā)表于 2025-3-30 14:04:41 | 只看該作者
,Enhanced Sparsification via?Stimulative Training,illation-guided exploration strategy. To reduce the huge capacity gap of distillation, we propose a subnet mutating expansion technique. Extensive experiments on various benchmarks indicate the effectiveness of STP. Specifically, without fine-tuning, our method consistently achieves superior perform
53#
發(fā)表于 2025-3-30 18:33:27 | 只看該作者
How Many Are in This Image A Safety Evaluation Benchmark for Vision LLMs,) Current VLLMs struggle with OOD texts but not images, unless the visual information is limited; and 2) These VLLMs can be easily misled by deceiving vision encoders only, and their vision-language training often compromise safety protocols. We release this safety evaluation suite at ..
54#
發(fā)表于 2025-3-30 20:52:04 | 只看該作者
55#
發(fā)表于 2025-3-31 01:00:29 | 只看該作者
,Coarse-to-Fine Implicit Representation Learning for?3D Hand-Object Reconstruction from?a?Single RGBocal geometric clues and the coarse-level visual priors to capture intricate details. Additionally, we propose a surface-aware efficient reconstruction strategy that sparsely performs SDF query based on the hand-object semantic priors. Experiments on two challenging hand-object datasets show that ou
56#
發(fā)表于 2025-3-31 06:43:28 | 只看該作者
57#
發(fā)表于 2025-3-31 11:25:44 | 只看該作者
,Enhancing Recipe Retrieval with?Foundation Models: A Data Augmentation Perspective, reduce computation cost rather than fully fine-tuning all the parameters. In addition, multi-level circle loss is proposed to align the original and augmented data pairs, which assigns different penalties for positive and negative pairs. On the Recipe1M dataset, our DAR outperforms all existing met
58#
發(fā)表于 2025-3-31 13:35:47 | 只看該作者
PapMOT: Exploring Adversarial Patch Attack Against Multiple Object Tracking,de the temporal consistency of tracking results across video frames, resulting in more aggressive attacks. We further develop new evaluation metrics to assess the robustness of MOT against such attacks. Extensive evaluations on multiple datasets demonstrate that our PapMOT can successfully attack va
59#
發(fā)表于 2025-3-31 17:38:30 | 只看該作者
,HiDiffusion: Unlocking Higher-Resolution Creativity and?Efficiency in?Pretrained Diffusion Models,etrained diffusion models to scale image generation resolutions even to . at . the inference speed of previous methods. Extensive experiments demonstrate that our approach can address object duplication and heavy computation issues, achieving state-of-the-art performance on higher-resolution image s
60#
發(fā)表于 2025-3-31 23:25:06 | 只看該作者
,Syn-to-Real Domain Adaptation for?Point Cloud Completion via?Part-Based Approach,ule, which operates in a part-wise manner to produce complete point clouds. Within PAC, we devise a novel part-aware transformer to learn relationships between parts and utilize this information to infer missing parts in incomplete point clouds. Extensive experiments demonstrate that our part-based
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥芬河市| 鲁甸县| 克拉玛依市| 新河县| 永修县| 名山县| 锦州市| 德格县| 习水县| 句容市| 广平县| 常德市| 偃师市| 新营市| 万盛区| 东宁县| 连云港市| 长垣县| 九龙城区| 辰溪县| 天全县| 息烽县| 朝阳县| 墨竹工卡县| 河曲县| 呼玛县| 钦州市| 清水河县| 永胜县| 溧水县| 任丘市| 江陵县| 台湾省| 宜都市| 永春县| 肇源县| 太白县| 墨玉县| 永吉县| 龙江县| 诸暨市|