找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: bradycardia
51#
發(fā)表于 2025-3-30 12:09:22 | 只看該作者
,High-Precision Self-supervised Monocular Depth Estimation with?Rich-Resource Prior,ypically achieve better performance than models that use ordinary single image input. However, these rich-resource inputs may not always be available, limiting the applicability of these methods in general scenarios. In this paper, we propose Rich-resource Prior Depth estimator (RPrDepth), which onl
52#
發(fā)表于 2025-3-30 14:26:47 | 只看該作者
53#
發(fā)表于 2025-3-30 20:24:55 | 只看該作者
54#
發(fā)表于 2025-3-30 20:41:09 | 只看該作者
OmniSSR: Zero-Shot Omnidirectional Image Super-Resolution Using Stable Diffusion Model,sks. Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images and a lack of effective out-of-domain generalization capabilities in training methods. Image generation methods represented by diffusion model provide strong pr
55#
發(fā)表于 2025-3-31 01:26:24 | 只看該作者
,UDiffText: A Unified Framework for?High-Quality Text Synthesis in?Arbitrary Images via?Character-Awods produce visually appealing results, they frequently exhibit spelling errors when rendering text within the generated images. Such errors manifest as missing, incorrect or extraneous characters, thereby severely constraining the performance of text image generation based on diffusion models. To a
56#
發(fā)表于 2025-3-31 06:35:32 | 只看該作者
,Confidence Self-calibration for?Multi-label Class-Incremental Learning, and future labels remain unavailable. This issue leads to a proliferation of false-positive errors due to erroneously high confidence multi-label predictions, exacerbating catastrophic forgetting within the disjoint label space. In this paper, we aim to refine multi-label confidence calibration in
57#
發(fā)表于 2025-3-31 10:14:24 | 只看該作者
,OMG: Occlusion-Friendly Personalized Multi-concept Generation in?Diffusion Models,hods are struggling with identity preservation, occlusion, and the harmony between foreground and background. In this work, we propose OMG, an occlusion-friendly personalized generation framework designed to seamlessly integrate multiple concepts within a single image. We propose a novel two-stage s
58#
發(fā)表于 2025-3-31 16:09:09 | 只看該作者
,Versatile Incremental Learning: Towards Class and?Domain-Agnostic Incremental Learning,ally assume that an incoming task has only increments of classes or domains, referred to as Class IL (CIL) or Domain IL (DIL), respectively. In this work, we consider a more challenging and realistic but under-explored IL scenario, named ., in which a model has no prior of which of the classes or do
59#
發(fā)表于 2025-3-31 19:45:46 | 只看該作者
,WeCromCL: Weakly Supervised Cross-Modality Contrastive Learning for?Transcription-Only Supervised Timinating expensive boundary annotation. The crux of this task lies in locating each transcription in scene text images without location annotations. In this work, we formulate this challenging problem as a .akly Supervised .ss-.odality .ontrastive .earning problem, and design a simple yet effective
60#
發(fā)表于 2025-3-31 23:50:19 | 只看該作者
,An Incremental Unified Framework for?Small Defect Inspection,ned for specific industrial products and struggle with diverse product portfolios and evolving processes. Although some previous studies attempt to address object dynamics by storing embeddings in the reserved memory bank, these methods suffer from memory capacity limitations and object distribution
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 14:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂伦春自治旗| 桓台县| 肃宁县| 商丘市| 清丰县| 启东市| 阿坝县| 遵义市| 建湖县| 定襄县| 正定县| 会宁县| 定结县| 泸定县| 清流县| 江华| 航空| 南宫市| 寿光市| 股票| 黄梅县| 兴山县| 温泉县| 云林县| 厦门市| 甘洛县| 彭州市| 卢龙县| 德昌县| 额敏县| 张家口市| 开远市| 梁河县| 裕民县| 井陉县| 娱乐| 清丰县| 开江县| 治县。| 通河县| 宝鸡市|