找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復制鏈接]
查看: 30952|回復: 58
樓主
發(fā)表于 2025-3-21 19:29:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ECCV 2024
副標題18th European Confer
編輯Ale? Leonardis,Elisa Ricci,Gül Varol
視頻videohttp://file.papertrans.cn/243/242324/242324.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic
描述.The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation..
出版日期Conference proceedings 2025
關鍵詞artificial intelligence; computer networks; computer systems; computer vision; education; Human-Computer
版次1
doihttps://doi.org/10.1007/978-3-031-72652-1
isbn_softcover978-3-031-72651-4
isbn_ebook978-3-031-72652-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Computer Vision – ECCV 2024影響因子(影響力)




書目名稱Computer Vision – ECCV 2024影響因子(影響力)學科排名




書目名稱Computer Vision – ECCV 2024網絡公開度




書目名稱Computer Vision – ECCV 2024網絡公開度學科排名




書目名稱Computer Vision – ECCV 2024被引頻次




書目名稱Computer Vision – ECCV 2024被引頻次學科排名




書目名稱Computer Vision – ECCV 2024年度引用




書目名稱Computer Vision – ECCV 2024年度引用學科排名




書目名稱Computer Vision – ECCV 2024讀者反饋




書目名稱Computer Vision – ECCV 2024讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:19:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:16:44 | 只看該作者
Frank H. Mader,Frank Wei?gerbernced transform, encoding, reduction, and augment operations to represent candidate proxies. Then, we employ?an evolutionary algorithm to perform crossover and mutation on superior candidates within the population based on correlation evaluation. Finally, we perform generator search without training
地板
發(fā)表于 2025-3-22 08:04:39 | 只看該作者
https://doi.org/10.1007/978-3-662-54347-4sent the proxy?with computation graphs and construct the proxy search space?using instinct and interaction statistics as inputs. To identify promising proxies, our search space incorporates various types?of basic transformations and network distance operators inspired?by previous proxy and KD-loss d
5#
發(fā)表于 2025-3-22 12:26:17 | 只看該作者
Beschwerden und Erkrankungen der Haut) using the trained reconstruction and diffusion models, and (3) an innovative application of SDS for finalizing PBR generation while keeping a fixed albedo based on Stable Diffusion model. Extensive evaluations demonstrate that UniDream surpasses existing methods in generating 3D objects with clear
6#
發(fā)表于 2025-3-22 16:03:05 | 只看該作者
7#
發(fā)表于 2025-3-22 20:26:15 | 只看該作者
https://doi.org/10.1007/978-3-030-37258-3-Occ, a novel method that encodes occupancy data into a compact latent feature space using a VQ-VAE. This approach simplifies semantic occupancy prediction into feature simulation in the VQ latent space, making it easier and more memory-efficient. Our method enables direct generation of semantic occ
8#
發(fā)表于 2025-3-23 00:12:47 | 只看該作者
https://doi.org/10.1007/978-3-030-37258-3 the ray-based kernel and employ an optimized sparse kernel to gather the input rays efficiently and render the optimized rays with our layered DoF volume rendering. We synthesize a dataset with defocused dynamic scenes for our task, and extensive experiments on our dataset show that our method outp
9#
發(fā)表于 2025-3-23 01:29:41 | 只看該作者
10#
發(fā)表于 2025-3-23 07:57:12 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-1 02:50
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿荣旗| 新田县| 宜兰市| 化隆| 东安县| 额济纳旗| 包头市| 贞丰县| 山阴县| 镇安县| 喜德县| 射洪县| 漳州市| 清水河县| 江孜县| 宣城市| 鲜城| 大邑县| 东宁县| 册亨县| 界首市| 邛崃市| 汝城县| 安陆市| 会东县| 赤水市| 开封市| 庆云县| 金乡县| 仙居县| 普兰店市| 灯塔市| 会理县| 金秀| 封开县| 惠州市| 兴城市| 昌平区| 谷城县| 宜春市| 铜川市|