找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 帳簿
41#
發(fā)表于 2025-3-28 16:23:27 | 只看該作者
Ursus-Nikolaus Riede,Martin Wernere that allows us to handle various generation tasks with varying degrees of conditioning with a single model. Empirically, LayoutFlow performs on par with state-of-the-art models while being significantly faster. The project page, including our code, can be found at ..
42#
發(fā)表于 2025-3-28 19:05:55 | 只看該作者
43#
發(fā)表于 2025-3-29 01:25:12 | 只看該作者
44#
發(fā)表于 2025-3-29 05:50:31 | 只看該作者
,Asynchronous Large Language Model Enhanced Planner for?Autonomous Driving, avenues for enhancing the interpretability and controllability of motion planning. Nevertheless, LLM-based planners continue to encounter significant challenges, including elevated resource consumption and extended inference times, which pose substantial obstacles to practical deployment. In light
45#
發(fā)表于 2025-3-29 09:47:37 | 只看該作者
,Make a?Cheap Scaling: A Self-Cascade Diffusion Model for?Higher-Resolution Adaptation,jects when generating images of varying sizes due to single-scale training data. Adapting large pre-trained diffusion models to higher resolution demands substantial computational and optimization resources, yet achieving generation capabilities comparable to low-resolution models remains challengin
46#
發(fā)表于 2025-3-29 13:07:30 | 只看該作者
47#
發(fā)表于 2025-3-29 17:13:28 | 只看該作者
,Making Large Language Models Better Planners with?Reasoning-Decision Alignment,lity. Inspired by the knowledge-driven nature of human driving, recent approaches explore the potential of large language models (LLMs) to improve understanding and decision-making in traffic scenarios. They find that the pretrain-finetune paradigm of LLMs on downstream data with the Chain-of-Though
48#
發(fā)表于 2025-3-29 22:22:44 | 只看該作者
49#
發(fā)表于 2025-3-30 02:19:11 | 只看該作者
,Representation Enhancement-Stabilization: Reducing Bias-Variance of?Domain Generalization,t domains. This paper explores DG through the lens of bias-variance decomposition, uncovering that test errors in DG predominantly arise from cross-domain bias and variance. Inspired by this insight, we introduce a Representation Enhancement-Stabilization (RES) framework, comprising a Representation
50#
發(fā)表于 2025-3-30 05:43:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 16:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
胶州市| 南京市| 泾阳县| 都安| 竹山县| 辽中县| 陇西县| 马关县| 克拉玛依市| 烟台市| 潢川县| 蛟河市| 诏安县| 册亨县| 福海县| 视频| 文水县| 西乌珠穆沁旗| 合水县| 当雄县| 公安县| 山东| 望都县| 泰顺县| 蚌埠市| 青田县| 咸丰县| 沂水县| 崇义县| 英德市| 高安市| 阜平县| 上饶县| 手机| 蕉岭县| 安义县| 石阡县| 福清市| 焉耆| 饶阳县| 韩城市|