找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復制鏈接]
樓主: vein220
31#
發(fā)表于 2025-3-27 00:18:15 | 只看該作者
TP2O: Creative Text Pair-to-Object Generation Using Balance Swap-Sampling,ons. Last, we employ a segmentation method to compare CLIP distances among the segmented components, ultimately selecting the most promising object from the sampled subset. Extensive experiments demonstrate that our approach outperforms recent SOTA T2I methods. Surprisingly, our results even rival those of human artists, such as . in Fig.?..
32#
發(fā)表于 2025-3-27 01:48:01 | 只看該作者
Efficient Bias Mitigation Without Privileged Information,er-free framework that leverages the . training history of a helper model to identify spurious samples, and . a group-balanced training set from which a robust model can be trained. We show that TAB improves worst-group performance without . group information or model selection, outperforming existing methods while maintaining overall accuracy.
33#
發(fā)表于 2025-3-27 05:56:35 | 只看該作者
34#
發(fā)表于 2025-3-27 13:11:13 | 只看該作者
35#
發(fā)表于 2025-3-27 13:49:08 | 只看該作者
0302-9743 ce on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; r
36#
發(fā)表于 2025-3-27 20:01:05 | 只看該作者
,Robust Nearest Neighbors for?Source-Free Domain Adaptation Under Class Distribution Shift,ng additional generic features free of the source model’s CDS bias. This provides a “second-opinion” regarding which nearest neighbors are more suitable for adaptation. We evaluate our method?using various types of features, datasets and tasks, outperforming previous methods in SFDA under CDS. Our c
37#
發(fā)表于 2025-3-27 22:52:39 | 只看該作者
,Time-Efficient and?Identity-Consistent Virtual Try-On Using A Variant of?Altered Diffusion Models,dividual features and a try-on module refining the attire?and generating missing parts integrated with a mask-aware post-processing technique ensuring the integrity of the individual’s identity. It demonstrates impressive results, surpassing?the state-of-the-art in speed by nearly 20 times during in
38#
發(fā)表于 2025-3-28 02:42:02 | 只看該作者
,Feature Diversification and?Adaptation for?Federated Domain Generalization,while preserving privacy. Our resultant global model shows robust performance on unseen test domain data. To enhance performance further, we develop an instance-adaptive inference approach tailored for test domain data. Our proposed instance feature adapter dynamically adjusts feature statistics to
39#
發(fā)表于 2025-3-28 08:10:39 | 只看該作者
40#
發(fā)表于 2025-3-28 13:13:03 | 只看該作者
,RoDUS: Robust Decomposition of?Static and?Dynamic Elements in?Urban Scenes, the reconstructed background, all by using self-supervision. Notably, experimental evaluations on KITTI-360 and Pandaset datasets demonstrate the effectiveness of our method in decomposing challenging urban scenes into precise static and dynamic components.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-29 03:06
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永新县| 宜兰市| 公主岭市| 江北区| 鄄城县| 依安县| 沙湾县| 阳高县| 乌拉特中旗| 本溪市| 云龙县| 孝感市| 通州区| 新兴县| 建平县| 静宁县| 五河县| 工布江达县| 武乡县| 佛冈县| 丰台区| 民权县| 德格县| 辽阳市| 遂宁市| 星座| 含山县| 忻城县| 德保县| 筠连县| 油尖旺区| 鲁山县| 桂平市| 眉山市| 亚东县| 石景山区| 西乡县| 鄂托克前旗| 徐闻县| 贵州省| 南木林县|