找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 尤指植物
41#
發(fā)表于 2025-3-28 18:04:51 | 只看該作者
One-Stage Prompt-Based Continual Learning,introduce a Query-Pool Regularization (QR) loss that regulates the relationship between the prompt query and the prompt pool to improve representation power. The QR loss is only applied during training time, so there is no computational overhead at inference from the QR loss. With the QR loss, our a
42#
發(fā)表于 2025-3-28 22:16:21 | 只看該作者
,SpaceJAM: a?Lightweight and?Regularization-Free Method for?Fast Joint Alignment of?Images, while significantly reducing computational demands and achieving at least a 10x speedup. SpaceJAM sets a new standard for rapid and effective image alignment, making the process more accessible and efficient. Our code is available at: ..
43#
發(fā)表于 2025-3-29 02:17:42 | 只看該作者
44#
發(fā)表于 2025-3-29 05:49:09 | 只看該作者
,: Quantization in?Low Data Regimes with?Generative Synthetic Data,ta generation process, enhancing fidelity through the inversion of learnable token embeddings. Through rigorous experimentation, . establishes new benchmarks in data-free and data-scarce quantization, significantly outperforming existing methods in accuracy and efficiency, thereby setting a new stan
45#
發(fā)表于 2025-3-29 09:18:57 | 只看該作者
46#
發(fā)表于 2025-3-29 13:35:47 | 只看該作者
47#
發(fā)表于 2025-3-29 16:19:50 | 只看該作者
48#
發(fā)表于 2025-3-29 19:45:14 | 只看該作者
,Dual-Level Adaptive Self-labeling for?Novel Class Discovery in?Point Cloud Segmentation,ning, reducing noise in generated segmentation. Finally, we conduct extensive experiments on two widely used datasets, SemanticKITTI and SemanticPOSS, and the results show our method outperforms the state of the art by a large margin.
49#
發(fā)表于 2025-3-30 01:54:27 | 只看該作者
,EBDM: Exemplar-Guided Image Translation with?Brownian-Bridge Diffusion Models,image. To efficiently guide the diffusion process toward the style of exemplar, we delineate three pivotal components: the Global Encoder, the Exemplar Network, and the Exemplar Attention Module to incorporate global and detailed texture information from exemplar images. Leveraging Bridge diffusion,
50#
發(fā)表于 2025-3-30 05:19:37 | 只看該作者
https://doi.org/10.1007/978-3-531-92543-1tion of important city blocks and buildings. Our approach achieves good realism, semantic consistency, and correctness across the heterogeneous urban styles in 330 US cities. Codes and datasets are released at?..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广宁县| 桦甸市| 古交市| 静安区| 太仓市| 沾化县| 涟源市| 平塘县| 福安市| 桐城市| 鄯善县| 南皮县| 天长市| 射阳县| 巴彦县| 枞阳县| 罗田县| 霍邱县| 中方县| 错那县| 宁城县| 盐边县| 青阳县| 化州市| 江孜县| 临漳县| 亳州市| 鄂伦春自治旗| 广元市| 建瓯市| 平罗县| 滨州市| 濮阳县| 扎鲁特旗| 来宾市| 巩留县| 千阳县| SHOW| 陵川县| 鄂托克旗| 武汉市|