找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復制鏈接]
樓主: centipede
31#
發(fā)表于 2025-3-27 00:21:20 | 只看該作者
General Introduction by Guerino Mazzolae data and provides ready-to-use estimation results. Comprehensive experiments demonstrate our state-of-the-art pose estimation performance on Human3.6M and MPI-INF-3DHP datasets. Further experiments on in-the-wild datasets also illustrate the capability to access more data to boost our model. Code will be available at ..
32#
發(fā)表于 2025-3-27 02:03:58 | 只看該作者
Clinical Assessment of Mucociliary Disorders a variational autoencoder, and leverage a diffusion model to enhance expressivity. Additionally, we instruct the model to preserve 3D structural fidelity by devising a range-guided discriminator. Experimental results on KITTI-360 and nuScenes datasets demonstrate both the robust expressiveness and fast speed of our LiDAR point cloud generation.
33#
發(fā)表于 2025-3-27 06:54:46 | 只看該作者
Models, Statistical Inference and Learningting the rich knowledge embedded in pre-trained foundation models, WPS-SAM outperforms other segmentation models trained with pixel-level strong annotations. Specifically, WPS-SAM achieves 68.93% mIOU and 79.53% mACC on the PartImageNet dataset, surpassing state-of-the-art fully supervised methods by approximately 4% in terms of mIOU.
34#
發(fā)表于 2025-3-27 12:44:42 | 只看該作者
,ComFusion: Enhancing Personalized Generation by?Instance-Scene Compositing and?Fusion,s coarse-generated images to ensure alignment with both the instance images and scene texts, thereby achieving a delicate balance between capturing the subject’s essence and maintaining scene fidelity. Extensive evaluations of ComFusion against various baselines in T2I personalization have demonstrated its qualitative and quantitative superiority.
35#
發(fā)表于 2025-3-27 15:03:45 | 只看該作者
,Mask as?Supervision: Leveraging Unified Mask Information for?Unsupervised 3D Pose Estimation,e data and provides ready-to-use estimation results. Comprehensive experiments demonstrate our state-of-the-art pose estimation performance on Human3.6M and MPI-INF-3DHP datasets. Further experiments on in-the-wild datasets also illustrate the capability to access more data to boost our model. Code will be available at ..
36#
發(fā)表于 2025-3-27 19:44:24 | 只看該作者
37#
發(fā)表于 2025-3-27 23:49:32 | 只看該作者
,WPS-SAM: Towards Weakly-Supervised Part Segmentation with?Foundation Models,ting the rich knowledge embedded in pre-trained foundation models, WPS-SAM outperforms other segmentation models trained with pixel-level strong annotations. Specifically, WPS-SAM achieves 68.93% mIOU and 79.53% mACC on the PartImageNet dataset, surpassing state-of-the-art fully supervised methods by approximately 4% in terms of mIOU.
38#
發(fā)表于 2025-3-28 03:03:07 | 只看該作者
39#
發(fā)表于 2025-3-28 07:40:34 | 只看該作者
,MoVideo: Motion-Aware Video Generation with?Diffusion Model, space by another spatio-temporal diffusion model under the guidance of depth, optical flow-based warped latent video and the calculated occlusion mask. Lastly, we use optical flows again to align and refine different frames for better video decoding from the latent space to the pixel space. In expe
40#
發(fā)表于 2025-3-28 12:08:07 | 只看該作者
,SHERL: Synthesizing High Accuracy and?Efficient Memory for?Resource-Limited Transfer Learning,esses. In the early route, intermediate outputs are consolidated via an anti-redundancy operation, enhancing their compatibility for subsequent interactions; thereby in the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead and regulate these fai
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 09:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
彰化县| 桐城市| 乐昌市| 抚顺县| 登封市| 樟树市| 宝清县| 元江| 洛隆县| 确山县| 广西| 淅川县| 和平区| 宜城市| 石渠县| 闸北区| 永登县| 安图县| 雅江县| 天气| 莱阳市| 台东市| 兰考县| 新密市| 黄龙县| 仲巴县| 江华| 江山市| 钦州市| 三穗县| 邯郸县| 淄博市| 古丈县| 泸水县| 延安市| 大新县| 兴化市| 诏安县| 洪湖市| 天门市| 深州市|