找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: malignant
51#
發(fā)表于 2025-3-30 09:24:47 | 只看該作者
C. Toker,B. Uzun,F. O. Ceylan,C. Iktennabled through a bidirectional cross-attention mechanism. The approach offers multiple advantages - (a) easy to implement on standard ML accelerators (GPUs/TPUs) via standard high-level operators, (b) applicable to standard ViT and its variants, thus generalizes to various tasks, (c) can handle diff
52#
發(fā)表于 2025-3-30 13:40:48 | 只看該作者
,Learning Pseudo 3D Guidance for?View-Consistent Texturing with?2D Diffusion, on learned .seudo .D .uidance. The key idea of P3G is to first learn a coarse but consistent texture, to serve as a global semantics guidance for encouraging the consistency between images generated on different views. To this end, we incorporate pre-trained text-to-image diffusion models and multi
53#
發(fā)表于 2025-3-30 17:41:31 | 只看該作者
54#
發(fā)表于 2025-3-30 22:06:58 | 只看該作者
,SparseRadNet: Sparse Perception Neural Network on?Subsampled Radar Data,o combine features from both branches. Experiments on the RADIal dataset show that our SparseRadNet exceeds state-of-the-art (SOTA) performance in object detection and achieves close to SOTA accuracy in freespace segmentation, meanwhile using sparse subsampled input data.
55#
發(fā)表于 2025-3-31 04:19:30 | 只看該作者
56#
發(fā)表于 2025-3-31 08:56:53 | 只看該作者
57#
發(fā)表于 2025-3-31 13:00:09 | 只看該作者
,Explain via?Any Concept: Concept Bottleneck Model with?Open Vocabulary Concepts,ifier on the downstream dataset; (3) Reconstructing the trained classification head via any set of user-desired textual concepts encoded by CLIP’s text encoder. To reveal potentially missing concepts from users, we further propose to iteratively find the closest concept embedding to the residual par
58#
發(fā)表于 2025-3-31 15:31:35 | 只看該作者
59#
發(fā)表于 2025-3-31 19:57:09 | 只看該作者
,Missing Modality Prediction for?Unpaired Multimodal Learning via?Joint Embedding of?Unimodal Modelscts the missing embedding through prompt tuning, leveraging information from available modalities. We evaluate our approach on several multimodal benchmark datasets and demonstrate its effectiveness and robustness across various scenarios of missing modalities.
60#
發(fā)表于 2025-4-1 00:13:11 | 只看該作者
,Improving Diffusion Models for?Authentic Virtual Try-on in?the?Wild, layer. In addition, we provide detailed textual prompts for both garment and person images to enhance the authenticity of the generated visuals. Finally, we present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity. Our experimental
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 13:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大邑县| 方城县| 昆山市| 南开区| 广饶县| 佳木斯市| 阳高县| 潜山县| 舒城县| 义乌市| 略阳县| 利川市| 武安市| 永仁县| 洪泽县| 合江县| 南郑县| 桦甸市| 平度市| 仁化县| 蓝田县| 手游| 多伦县| 军事| 灵寿县| 腾冲县| 苏尼特右旗| 祁门县| 额尔古纳市| 平罗县| 车致| 滨海县| 龙口市| 呼伦贝尔市| 绩溪县| 镇安县| 天镇县| 屯留县| 丰台区| 科技| 当雄县|