找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Image Processing; 8th International Co Harkeerat Kaur,Vinit Jakhetiya,Sanjeev Kumar Conference proceedings 2024 The Edi

[復制鏈接]
樓主: T-Lymphocyte
51#
發(fā)表于 2025-3-30 09:58:21 | 只看該作者
Damage Segmentation and Restoration of Ancient Wall Paintings for Preserving Cultural Heritage,rating due to the passage of time, environmental factors, and human actions. Preserving and Restoring these delicate artworks is crucial. One approach to aid their digital restoration is leveraging advanced technologies like deep learning. This study applies image segmentation and restoration techni
52#
發(fā)表于 2025-3-30 13:21:38 | 只看該作者
53#
發(fā)表于 2025-3-30 17:39:07 | 只看該作者
,Fusion of?Handcrafted Features and?Deep Features to?Detect COVID-19,ures and handcrafted features to provide a unique method for COVID-19 identification using chest X-rays. In order to extract high-level features from the chest X-ray pictures, we first use a convolutional neural network (CNN) that has already been trained to take advantage of deep learning. The disc
54#
發(fā)表于 2025-3-30 23:49:04 | 只看該作者
,An Improved AttnGAN Model for?Text-to-Image Synthesis, text sequence length increases, these models suffer from a loss of information, leading to missed keywords and unsatisfactory results. To address this, we propose an attentional GAN (AttnGAN) model with a text attention mechanism. We evaluate AttnGAN variants on the MS-COCO dataset qualitatively an
55#
發(fā)表于 2025-3-31 01:41:34 | 只看該作者
56#
發(fā)表于 2025-3-31 05:21:36 | 只看該作者
,MAAD-GAN: Memory-Augmented Attention-Based Discriminator GAN for?Video Anomaly Detection,troduces a novel approach, named MAAD-GAN, for video anomaly detection (VAD) utilizing Generative Adversarial Networks (GANs). The MAAD-GAN framework combines a Wide Residual Network (WRN) in the generator with a memory module to learn the normal patterns present in the training video dataset, enabl
57#
發(fā)表于 2025-3-31 11:10:14 | 只看該作者
,AG-PDCnet: An Attention Guided Parkinson’s Disease Classification Network with?MRI, DTI and?Clinican Guided multi-class multi-modal PD Classification framework. In particular, we combine clinical assessments with the Neuroimaging data, namely, MRI and DTI. The three classes considered for this problem are PD, Healthy Controls (HC) and Scans Without Evidence of Dopamine Deficiency (SWEDD). Four CN
58#
發(fā)表于 2025-3-31 14:58:58 | 只看該作者
59#
發(fā)表于 2025-3-31 21:35:29 | 只看該作者
60#
發(fā)表于 2025-4-1 01:00:25 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沙雅县| 锦屏县| 丹江口市| 塔河县| 淮南市| 苍梧县| 绥化市| 贞丰县| 来安县| 松桃| 宜州市| 宁阳县| 青龙| 慈溪市| 丹凤县| 海安县| 叶城县| 鄂伦春自治旗| 潜江市| 华坪县| 新宁县| 镇原县| 阜南县| 清流县| 玛沁县| 鄂托克前旗| 达尔| 四川省| 宣威市| 梁河县| 穆棱市| 尤溪县| 苏尼特右旗| 泰兴市| 余江县| 澄城县| 澄江县| 历史| 乳山市| 上饶市| 泉州市|