找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Image Processing; 8th International Co Harkeerat Kaur,Vinit Jakhetiya,Sanjeev Kumar Conference proceedings 2024 The Edi

[復(fù)制鏈接]
樓主: BOUT
11#
發(fā)表于 2025-3-23 13:45:29 | 只看該作者
,Robust Unsupervised Geo-Spatial Change Detection Algorithm for?SAR Images, unsupervised grid graph generation algorithm specifically designed for change detection using Synthetic Aperture Radar (SAR) images. The proposed technique encompasses a multi-step process: starting with an improved log-ratio based difference image generation, followed by shortest path vector compu
12#
發(fā)表于 2025-3-23 16:33:42 | 只看該作者
13#
發(fā)表于 2025-3-23 21:12:15 | 只看該作者
14#
發(fā)表于 2025-3-24 01:23:16 | 只看該作者
15#
發(fā)表于 2025-3-24 04:02:29 | 只看該作者
16#
發(fā)表于 2025-3-24 08:37:14 | 只看該作者
17#
發(fā)表于 2025-3-24 11:17:40 | 只看該作者
MuSTAT: Face Ageing Using Multi-scale Target Age Style Transfer,age gap. Although this can be solved using data collected over long age spans, it is challenging and tedious. This work proposes a multi-scale target age-based style face ageing model using an encoder-decoder architecture to generate high-fidelity face images under ageing. Further, we propose using
18#
發(fā)表于 2025-3-24 15:09:41 | 只看該作者
,Efficient Contextual Feature Network for?Single Image Super Resolution,g feature utilization through complex layer connections. However, these methods may not be suitable for resource-constrained devices due to their computational demands. We propose a novel approach called Efficient Contextual Feature Network (ECFN) to address this issue. ECFN utilizes two convolution
19#
發(fā)表于 2025-3-24 20:22:22 | 只看該作者
T-Fusion Net: A Novel Deep Neural Network Augmented with Multiple Localizations Based Spatial Attenworks. Nonetheless, the growing complexity of datasets and the ongoing pursuit of enhanced performance necessitate innovative approaches. In this study, we introduce a novel deep neural network, referred to as the “T-Fusion Net,” which incorporates multiple spatial attention mechanisms based on loca
20#
發(fā)表于 2025-3-24 23:51:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深水埗区| 望都县| 河南省| 宾阳县| 固阳县| 罗城| 海伦市| 铜鼓县| 理塘县| 库尔勒市| 板桥市| 芦溪县| 宜宾县| 滁州市| 黄石市| 乐业县| 彝良县| 武汉市| 台州市| 平江县| 隆林| 鄢陵县| 吉隆县| 黔江区| 乌拉特后旗| 牙克石市| 胶南市| 隆回县| 大连市| 齐河县| 临颍县| 桃园市| 冷水江市| 广州市| 阳山县| 大洼县| 永川市| 遵义市| 仲巴县| 邯郸县| 安康市|