找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Mathematics Modeling in Cancer Analysis; Third International Jia Wu,Wenjian Qin,Boklye Kim Conference proceedings 2025 The E

[復(fù)制鏈接]
查看: 53197|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:00:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Mathematics Modeling in Cancer Analysis
副標(biāo)題Third International
編輯Jia Wu,Wenjian Qin,Boklye Kim
視頻videohttp://file.papertrans.cn/243/242254/242254.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computational Mathematics Modeling in Cancer Analysis; Third International  Jia Wu,Wenjian Qin,Boklye Kim Conference proceedings 2025 The E
描述.This book constitutes the refereed proceedings of Third International Workshop on Computational Mathematics Modeling in Cancer Analysis, CMMCA 2024, held in Marrakesh, Morocco, on October 6, 2024, in conjunction with MICCAI 2024.?..The 12 full papers presented in this book were carefully reviewed and selected from 14 submissions. CMMCA serves as a platform for collaboration among professionals in mathematics, engineering, computer science, and medicine, focusing on innovative mathematical methods for analyzing complex cancer data..
出版日期Conference proceedings 2025
關(guān)鍵詞Computer Science; Cancer imaging analysis; Computer-aided tumor detection; Multi-modality; Mathematics m
版次1
doihttps://doi.org/10.1007/978-3-031-73360-4
isbn_softcover978-3-031-73359-8
isbn_ebook978-3-031-73360-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Computational Mathematics Modeling in Cancer Analysis影響因子(影響力)




書目名稱Computational Mathematics Modeling in Cancer Analysis影響因子(影響力)學(xué)科排名




書目名稱Computational Mathematics Modeling in Cancer Analysis網(wǎng)絡(luò)公開度




書目名稱Computational Mathematics Modeling in Cancer Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Mathematics Modeling in Cancer Analysis被引頻次




書目名稱Computational Mathematics Modeling in Cancer Analysis被引頻次學(xué)科排名




書目名稱Computational Mathematics Modeling in Cancer Analysis年度引用




書目名稱Computational Mathematics Modeling in Cancer Analysis年度引用學(xué)科排名




書目名稱Computational Mathematics Modeling in Cancer Analysis讀者反饋




書目名稱Computational Mathematics Modeling in Cancer Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:31:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:01:10 | 只看該作者
地板
發(fā)表于 2025-3-22 07:27:19 | 只看該作者
Multi-channel Multi-model Fusion Module (MMFM) Based Circulating Abnormal Cells (CACs) Detection founder each channel. Previous studies have utilized instance segmentation and target detection algorithms to identify cells and signal points in four-color fluorescence in situ hybridization (FISH) microscopy images. However, these algorithms require high accuracy in cell edge segmentation and signal
5#
發(fā)表于 2025-3-22 12:02:56 | 只看該作者
,Domain Game: Disentangle Anatomical Feature for?Single Domain Generalized Segmentation,e disentanglement is a classic solution to this purpose, where the extracted task-related feature is presumed to be resilient to domain shift. However, the absence of references from other domains in a single-domain scenario poses significant uncertainty in feature disentanglement (.). In this paper
6#
發(fā)表于 2025-3-22 16:09:23 | 只看該作者
Attention-Fusion Model for Multi-omics (AMMO) Data Integration in Lung Adenocarcinoma,tanding of interactions among different omics data remains unknown, current methods do not consider the unique and similar properties. In this paper, we propose Attention-fusion Model for Multi-Omics (AMMO), a robust method that addresses this challenge through domain separation. Our proposed attent
7#
發(fā)表于 2025-3-22 18:46:13 | 只看該作者
PD-L1 Expression Prediction Using Scalable Multi Instance Transformer,t clinical standard for initiating ICI therapy is the assessment of Programmed Death-Ligand 1 (PD-L1) status via immunohistochemistry (IHC) on biopsy specimens. However, this invasive procedure presents risks and limitations, highlighting the need for a non-invasive alternative. This study retrospec
8#
發(fā)表于 2025-3-23 00:51:41 | 只看該作者
,Improving Single-Source Domain Generalization via?Anatomy-Guided Texture Augmentation for?Cervical linical applications. Data augmentation plays an important role in improving the diversity of training data. Recent data augmentation methods aim to randomize or disrupt the texture of images to encourage models to focus more on shape features, which are considered domain-invariant. It’s worth notin
9#
發(fā)表于 2025-3-23 03:23:07 | 只看該作者
10#
發(fā)表于 2025-3-23 09:02:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 08:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和顺县| 桃江县| 恩平市| 慈利县| 苏尼特左旗| 黑龙江省| 南靖县| 桓仁| 德化县| 大庆市| 绍兴市| 花莲市| 元江| 屯留县| 阿鲁科尔沁旗| 福建省| 镇康县| 晋城| 盐山县| 大洼县| 天峨县| 鄱阳县| 英超| 安陆市| 巫溪县| 太原市| 米林县| 蕲春县| 武陟县| 成安县| 安徽省| 岳阳县| 高安市| 彭州市| 雷山县| 四子王旗| 锦屏县| 温宿县| 闻喜县| 永康市| 东安县|