找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence in Data Science; 7th IFIP TC 12 Inter Mieczyslaw Lech Owoc,Felix Enigo Varghese Sicily,P Conference proceedings

[復(fù)制鏈接]
樓主: panache
11#
發(fā)表于 2025-3-23 11:57:58 | 只看該作者
12#
發(fā)表于 2025-3-23 15:31:14 | 只看該作者
Mieczyslaw Lech Owoc,Felix Enigo Varghese Sicily,P
13#
發(fā)表于 2025-3-23 18:44:29 | 只看該作者
14#
發(fā)表于 2025-3-24 00:13:03 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:38 | 只看該作者
https://doi.org/10.1007/978-3-658-27431-3 techniques. Designed for open-source collaboration, this solution is positioned for continuous improvement, adaptation to evolving needs, and addressing emerging challenges in the field of intelligent transportation and related domains. This paper represents a foundational step towards establishing
16#
發(fā)表于 2025-3-24 08:09:49 | 只看該作者
Arbeitsbereich Baumanagement – ic regression, SVM, stochastic gradient descent, decision trees, and ensemble models were conducted. In summary, this research contributes significantly to the ongoing battle against online toxicity and the promotion of more constructive online conversations. The RNN algorithm’s 99.47% accuracy rate
17#
發(fā)表于 2025-3-24 13:34:54 | 只看該作者
18#
發(fā)表于 2025-3-24 15:45:21 | 只看該作者
Die digitale Demokratie in der Schweizhese experiments, we attained exceptional F1 scores of 99% for RoBERTa, 98% for AlBERT, and 96% for BERT base. In contrast, traditional models like Logistic Regression achieved 93%, Random Forest 89%, and deep learning models such as LSTM, BiLSTM and CNN achieved 82%, 93% and 90%, respectively. The
19#
發(fā)表于 2025-3-24 19:32:59 | 只看該作者
20#
發(fā)表于 2025-3-25 01:57:04 | 只看該作者
Julian Bubel Dipl.-Ing.,Jürgen Grabend reduce complexity. This is leading to improved classification performance. The proposed work is evaluated on six machine-learning models. The features extracted achieving a consistent AUC-ROC score of 95%. The highest accuracy of 95% on the Cleveland dataset. Our proposed machine learning-based C
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绩溪县| 纳雍县| 锡林浩特市| 陵川县| 察雅县| 高碑店市| 泊头市| 永登县| 舞钢市| 汤原县| 安徽省| 隆化县| 城口县| 昭平县| 长乐市| 汕头市| 江门市| 大化| 元朗区| 阳东县| 鄂托克旗| 湄潭县| 海淀区| 辛集市| 龙海市| 息烽县| 澄城县| 木兰县| 色达县| 霍州市| 瑞安市| 樟树市| 甘德县| 隆子县| 西乌| 黔西| 中方县| 宣威市| 屏东县| 天津市| 江都市|