找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Algorithms for Shallow Water Equations; Eleuterio F. Toro Textbook 2024Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: 支票
31#
發(fā)表于 2025-3-26 22:12:00 | 只看該作者
32#
發(fā)表于 2025-3-27 03:29:50 | 只看該作者
Der Akteur: Habitus, Intention und Reflexionented, alternative approach to linearisation, and on which basic mathematical concepts on hyperbolic equations are consolidated. All contents are particularly useful in a teaching/self-studying setting. Useful background is found in Chaps.?. and ..
33#
發(fā)表于 2025-3-27 08:42:20 | 只看該作者
Niklas Woermann M.A. soc, M.A. oecs. Finally, the two-dimensional steady shallow water equations are analysed, proving their hyperbolicity in the supercritical regime. A list of suggested exercises is given at the end of the Chapter. Useful background is found in Chaps.?. and ..
34#
發(fā)表于 2025-3-27 13:05:26 | 只看該作者
,Notions on?Hyperbolic Equations, tailored to the aims of this book; it furnishes the bases for analysing the mathematical and physical character of the non-linear shallow water equations in Chaps.?. and .; and for solving the Riemann problem in Chaps.?. and .. The contents are also useful for designing and interpreting numerical methods for wave propagation phenomena.
35#
發(fā)表于 2025-3-27 13:51:30 | 只看該作者
36#
發(fā)表于 2025-3-27 20:05:44 | 只看該作者
Properties of the Nonlinear Equations,s. Finally, the two-dimensional steady shallow water equations are analysed, proving their hyperbolicity in the supercritical regime. A list of suggested exercises is given at the end of the Chapter. Useful background is found in Chaps.?. and ..
37#
發(fā)表于 2025-3-27 23:18:40 | 只看該作者
38#
發(fā)表于 2025-3-28 05:37:25 | 只看該作者
39#
發(fā)表于 2025-3-28 09:01:20 | 只看該作者
40#
發(fā)表于 2025-3-28 13:43:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 12:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿瓦提县| 曲松县| 西乡县| 含山县| 保亭| 天峻县| 张家界市| 新疆| 布拖县| 广河县| 武强县| 土默特左旗| 泾阳县| 罗山县| 临颍县| 融水| 修武县| 原阳县| 三原县| 阿勒泰市| 临沭县| 古浪县| 通州市| 县级市| 鞍山市| 固始县| 彩票| 浑源县| 龙海市| 石渠县| 白沙| 莎车县| 清河县| 盘锦市| 凤台县| 衢州市| 阳江市| 会东县| 招远市| 云梦县| 五华县|