找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Circles, Spheres and Spherical Geometry; Hiroshi Maehara,Horst Martini Textbook 2024 The Editor(s) (if applicable) and The Author(s), unde

[復制鏈接]
查看: 33478|回復: 51
樓主
發(fā)表于 2025-3-21 20:02:38 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Circles, Spheres and Spherical Geometry
編輯Hiroshi Maehara,Horst Martini
視頻videohttp://file.papertrans.cn/243/242124/242124.mp4
概述Presents cross-connections of geometry of circles and spherical geometry from various points of view.Motivates readers to derive own new results.Includes solutions to selected exercises
叢書名稱Birkh?user Advanced Texts‘ Basler Lehrbücher
圖書封面Titlebook: Circles, Spheres and Spherical Geometry;  Hiroshi Maehara,Horst Martini Textbook 2024 The Editor(s) (if applicable) and The Author(s), unde
描述.This textbook focuses on the geometry of circles, spheres, and spherical geometry. Various classic themes are used as introductory and motivating topics...The book begins very simply for the reader in the first chapter discussing the notions of inversion and stereographic projection. Here, various classical topics and theorems such as Steiner cycles, inversion, Soddy‘s hexlet, stereographic projection and Poncelet‘s porism are discussed. The book then delves into Bend formulas and the relation of radii of circles, focusing on Steiner circles, mutually tangent four circles in the plane and other related notions. Next, some fundamental concepts of graph theory are explained. The book then proceeds to explore orthogonal-cycle representation of quadrangulations, giving detailed discussions of the Brightwell-Scheinerman theorem (an extension of the Koebe-Andreev-Thurston theorem), Newton’s 13-balls-problem, Casey’s theorem (an extension of Ptolemy’s theorem) and its generalizations. The remainder of the book is devoted to spherical geometry including a chapter focusing on geometric probability on the sphere...The book also contains new results of the authors and insightful notes on the
出版日期Textbook 2024
關(guān)鍵詞Spherical Geometry; Geodesic Segments; Spherical Polygon; Geometry of Circles and Spheres; Great Circle;
版次1
doihttps://doi.org/10.1007/978-3-031-62776-7
isbn_softcover978-3-031-62778-1
isbn_ebook978-3-031-62776-7Series ISSN 1019-6242 Series E-ISSN 2296-4894
issn_series 1019-6242
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Circles, Spheres and Spherical Geometry影響因子(影響力)




書目名稱Circles, Spheres and Spherical Geometry影響因子(影響力)學科排名




書目名稱Circles, Spheres and Spherical Geometry網(wǎng)絡(luò)公開度




書目名稱Circles, Spheres and Spherical Geometry網(wǎng)絡(luò)公開度學科排名




書目名稱Circles, Spheres and Spherical Geometry被引頻次




書目名稱Circles, Spheres and Spherical Geometry被引頻次學科排名




書目名稱Circles, Spheres and Spherical Geometry年度引用




書目名稱Circles, Spheres and Spherical Geometry年度引用學科排名




書目名稱Circles, Spheres and Spherical Geometry讀者反饋




書目名稱Circles, Spheres and Spherical Geometry讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:27:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:26:11 | 只看該作者
地板
發(fā)表于 2025-3-22 07:56:46 | 只看該作者
5#
發(fā)表于 2025-3-22 12:01:40 | 只看該作者
https://doi.org/10.1007/978-1-137-05113-4, we show that among cyclic .-gons inscribed in a cap of fixed spherical radius, regular .-gons have the maximum perimeter, and among the .-gons on . with fixed perimeter, regular .-gons have the maximum area.
6#
發(fā)表于 2025-3-22 15:17:06 | 只看該作者
7#
發(fā)表于 2025-3-22 18:46:47 | 只看該作者
8#
發(fā)表于 2025-3-22 23:20:16 | 只看該作者
9#
發(fā)表于 2025-3-23 01:45:26 | 只看該作者
Spherical Geometry III,, we show that among cyclic .-gons inscribed in a cap of fixed spherical radius, regular .-gons have the maximum perimeter, and among the .-gons on . with fixed perimeter, regular .-gons have the maximum area.
10#
發(fā)表于 2025-3-23 09:09:11 | 只看該作者
Quartets on a Sphere,ctually, any region on a sphere contains a quartet whose six distances determine the radius of the sphere uniquely. Moreover, we present an equation to judge if a given quartet can be a quartet on a sphere of a suitable radius.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
自贡市| 宽甸| 随州市| 漳州市| 乐业县| 长兴县| 海晏县| 阳西县| 明溪县| 平阴县| 晴隆县| 双鸭山市| 昌黎县| 沐川县| 乐陵市| 南通市| 台北市| 肃北| 大同市| 手机| 南通市| 本溪市| 拉萨市| 江山市| 湄潭县| 库车县| 衡山县| 镇康县| 哈巴河县| 乃东县| 建湖县| 许昌县| 象州县| 广饶县| 岐山县| 渭南市| 山东省| 合阳县| 广河县| 宜章县| 邵阳市|