找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cyberspace Safety and Security; 12th International S Jieren Cheng,Xiangyan Tang,Xiaozhang Liu Conference proceedings 2021 Springer Nature S

[復(fù)制鏈接]
查看: 51023|回復(fù): 64
樓主
發(fā)表于 2025-3-21 19:13:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Cyberspace Safety and Security
副標(biāo)題12th International S
編輯Jieren Cheng,Xiangyan Tang,Xiaozhang Liu
視頻videohttp://file.papertrans.cn/242/241948/241948.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Cyberspace Safety and Security; 12th International S Jieren Cheng,Xiangyan Tang,Xiaozhang Liu Conference proceedings 2021 Springer Nature S
描述The LNCS 12653 constitute the proceedings of the 12th International Symposium on Cyberspace Safety and Security, CSS 2020, held in Haikou, China, in December 2020..The 37 regular papers presented in this book were carefully reviewed and selected from 82 submissions. The papers focuses on Cyberspace Safety and Security, such as authentication, access control, availability, integrity, privacy, confidentiality, dependability and sustainability issues of cyberspace..
出版日期Conference proceedings 2021
關(guān)鍵詞Computer Science; Informatics; Conference Proceedings; Research; Applications
版次1
doihttps://doi.org/10.1007/978-3-030-73671-2
isbn_softcover978-3-030-73670-5
isbn_ebook978-3-030-73671-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書(shū)目名稱(chēng)Cyberspace Safety and Security影響因子(影響力)




書(shū)目名稱(chēng)Cyberspace Safety and Security影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Cyberspace Safety and Security網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Cyberspace Safety and Security網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Cyberspace Safety and Security被引頻次




書(shū)目名稱(chēng)Cyberspace Safety and Security被引頻次學(xué)科排名




書(shū)目名稱(chēng)Cyberspace Safety and Security年度引用




書(shū)目名稱(chēng)Cyberspace Safety and Security年度引用學(xué)科排名




書(shū)目名稱(chēng)Cyberspace Safety and Security讀者反饋




書(shū)目名稱(chēng)Cyberspace Safety and Security讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:38:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:54:37 | 只看該作者
Indizieren und Gliedern von Dokumenten,ability, and the artificial designed adversarial examples can make the DNN model output the wrong results. These adversarial examples not only exist in the digital world, but also in the physical world. At present, researches on autonomous driving platform mainly focus on attacking a single sensor.
地板
發(fā)表于 2025-3-22 06:47:04 | 只看該作者
https://doi.org/10.1007/978-1-4302-7214-4vulnerability of malware detector and improve the defense ability of cyberspace. Considering the huge market share of android system, adversarial malware examples of android are studied in this paper. And an algorithm is proposed to find universal adversarial perturbations of malware. Such perturbat
5#
發(fā)表于 2025-3-22 08:50:22 | 只看該作者
https://doi.org/10.1007/978-1-4302-7214-4includes a random projection method for reducing feature dimensionality which would be more efficient than usual feature selection methods in existing work for the task. We also introduced a new method of SGD-based SVM with adapted sampling, which was based on the insight from the confidence and nea
6#
發(fā)表于 2025-3-22 14:18:11 | 只看該作者
https://doi.org/10.1007/978-1-4302-7214-4h field of adversarial machine learning. Support vector machines (SVMs), as a kind of successful approach, were widely used to solve security problems, such as image classification, malware detection, spam filtering, and intrusion detection. However, many adversarial attack methods have emerged rece
7#
發(fā)表于 2025-3-22 19:58:33 | 只看該作者
8#
發(fā)表于 2025-3-23 00:50:40 | 只看該作者
9#
發(fā)表于 2025-3-23 04:01:45 | 只看該作者
10#
發(fā)表于 2025-3-23 07:12:10 | 只看該作者
https://doi.org/10.1007/978-1-4842-2439-7ts. Different attack and defense strategies have been proposed to better study the security of deep neural networks. But these works only focus on an aspect such as attack or defense. In this work, we propose a robust GAN based on the attention mechanism, which uses the deep latent features of the o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德化县| 拉孜县| 丰县| 莱州市| 晋城| 勐海县| 新兴县| 辰溪县| 芜湖县| 和林格尔县| 疏勒县| 高清| 奉节县| 措勤县| 永顺县| 安达市| 唐海县| 简阳市| 恩施市| 句容市| 青河县| 韶关市| 泗洪县| 广汉市| 漯河市| 峨边| 平武县| 佛山市| 芦山县| 丰城市| 昭苏县| 南雄市| 贡嘎县| 垣曲县| 海阳市| 柳江县| 蓝田县| 图木舒克市| 昭觉县| 思南县| 宁城县|