找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cyber Security Cryptography and Machine Learning; Third International Shlomi Dolev,Danny Hendler,Moti Yung Conference proceedings 2019 Spr

[復(fù)制鏈接]
查看: 29015|回復(fù): 61
樓主
發(fā)表于 2025-3-21 18:35:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Cyber Security Cryptography and Machine Learning
副標(biāo)題Third International
編輯Shlomi Dolev,Danny Hendler,Moti Yung
視頻videohttp://file.papertrans.cn/242/241742/241742.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Cyber Security Cryptography and Machine Learning; Third International  Shlomi Dolev,Danny Hendler,Moti Yung Conference proceedings 2019 Spr
描述.This book constitutes the refereed proceedings of the Third International Symposium on Cyber Security Cryptography and Machine Learning, CSCML 2019, held in Beer-Sheva, Israel, in June 2019..The 18 full and 10 short papers presented in this volume were carefully reviewed and selected from 36 submissions. They deal with the theory, design, analysis, implementation, or application of cyber security, cryptography and machine learning systems and networks, and conceptually innovative topics in these research areas..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; authentication; communication; computer crime; computer networks; computer opera
版次1
doihttps://doi.org/10.1007/978-3-030-20951-3
isbn_softcover978-3-030-20950-6
isbn_ebook978-3-030-20951-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Cyber Security Cryptography and Machine Learning影響因子(影響力)




書(shū)目名稱Cyber Security Cryptography and Machine Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Cyber Security Cryptography and Machine Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Cyber Security Cryptography and Machine Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Cyber Security Cryptography and Machine Learning被引頻次




書(shū)目名稱Cyber Security Cryptography and Machine Learning被引頻次學(xué)科排名




書(shū)目名稱Cyber Security Cryptography and Machine Learning年度引用




書(shū)目名稱Cyber Security Cryptography and Machine Learning年度引用學(xué)科排名




書(shū)目名稱Cyber Security Cryptography and Machine Learning讀者反饋




書(shū)目名稱Cyber Security Cryptography and Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:23 | 只看該作者
https://doi.org/10.1007/978-1-349-00905-3ake deciphering of the conventional encryption an easy task. This leads us to propose a scheme for use of QKD (quantum key distribution) which could be effective as a countermeasure. In this paper we will describe the feasibility study of weather effect design guidelines for a small, short range, mobile QKD system from drone to IoT on the ground.
板凳
發(fā)表于 2025-3-22 03:47:32 | 只看該作者
地板
發(fā)表于 2025-3-22 06:25:09 | 只看該作者
5#
發(fā)表于 2025-3-22 09:00:52 | 只看該作者
6#
發(fā)表于 2025-3-22 16:40:18 | 只看該作者
Continuous Key Agreement with Reduced Bandwidth, This is not possible for every KEM and we discuss cases where a KEM can be converted to an MKEM. One example is the quantum-safe proposal BIKE1, where the BIKE-MKEM saves . of the communication bandwidth, compared to the original construction. In addition, we offer the notion and two constructions for hybrid CKA.
7#
發(fā)表于 2025-3-22 17:03:55 | 只看該作者
8#
發(fā)表于 2025-3-22 21:25:28 | 只看該作者
9#
發(fā)表于 2025-3-23 02:10:02 | 只看該作者
10#
發(fā)表于 2025-3-23 07:59:02 | 只看該作者
Amended Cross-Entropy Cost: An Approach for Encouraging Diversity in Classification Ensemble (Brief ensemble for classification. We also suggest the Stacked Diversified Mixture of Classifiers (SDMC), which is based on our outcome. SDMC is a layer that aims to replace the final layer of a DNN classifier. It can be easily applied on any model, while the cost in terms of number of parameters and computational power is relatively low.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 11:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元氏县| 甘泉县| 保靖县| 天全县| 贵溪市| 望都县| 滦南县| 光泽县| 广元市| 定边县| 深圳市| 平利县| 福州市| 石泉县| 襄樊市| 光山县| 英吉沙县| 年辖:市辖区| 巴林右旗| 广元市| 乌拉特前旗| 临高县| 成都市| 白山市| 寻甸| 竹山县| 西充县| 乐东| 磴口县| 南郑县| 台东县| 波密县| 揭东县| 襄樊市| 阿合奇县| 恭城| 苏州市| 辉南县| 沾益县| 张家界市| 宝清县|