找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Curves and Surfaces for Computer Graphics; David Salomon Textbook 2006 Springer-Verlag New York 2006 Animation.Interpolation.Mathematica.a

[復(fù)制鏈接]
樓主: Enkephalin
11#
發(fā)表于 2025-3-23 13:15:43 | 只看該作者
https://doi.org/10.1007/978-981-99-1685-6wever, as the discussion in Section 1.5 (especially exercise 1.20) illustrates, a curve based on a high-degree poly- nomial may wiggle wildly and its shape may be far from what the user has in mind. In practical work we are normally interested in a smooth, tight curve that proceeds from point to poi
12#
發(fā)表于 2025-3-23 17:43:03 | 只看該作者
https://doi.org/10.1007/978-981-99-1685-6 notably R. Riesenfeld. They have been studied extensively, have been considerably extended since the 1970s, and much is currently known about them. The designation ?B“ stands for Basis, so the full name of this approach to curve and surface design is the basis spline. This chapter discusses the imp
13#
發(fā)表于 2025-3-23 21:43:21 | 只看該作者
https://doi.org/10.1007/978-981-99-1685-6es that lead to the same result. A third approach to curve and surface design, employing the process of . (also known as . or .), is the topic of this chapter. Refinement is a general approach that can produce Bézier curves, B-spline curves, and other types of curves. Its main advantage is that it c
14#
發(fā)表于 2025-3-23 23:11:47 | 只看該作者
15#
發(fā)表于 2025-3-24 03:39:25 | 只看該作者
https://doi.org/10.1007/0-387-28452-4Animation; Interpolation; Mathematica; architecture; computer; computer graphics; computer science
16#
發(fā)表于 2025-3-24 08:12:54 | 只看該作者
978-1-4419-2023-2Springer-Verlag New York 2006
17#
發(fā)表于 2025-3-24 13:33:28 | 只看該作者
Subdivision Methods,es that lead to the same result. A third approach to curve and surface design, employing the process of . (also known as . or .), is the topic of this chapter. Refinement is a general approach that can produce Bézier curves, B-spline curves, and other types of curves. Its main advantage is that it can easily be extended to surfaces.
18#
發(fā)表于 2025-3-24 15:17:26 | 只看該作者
19#
發(fā)表于 2025-3-24 20:07:03 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
额敏县| 碌曲县| 泽库县| 山阳县| 亳州市| 乳源| 宾阳县| 汉源县| 会东县| 河池市| 会理县| 蕲春县| 咸宁市| 阿图什市| 桦川县| 诏安县| 阜南县| 彰武县| 余干县| 永丰县| 大安市| 探索| 玛曲县| 崇仁县| 油尖旺区| 金山区| 西吉县| 衡山县| 集贤县| 长白| 衡阳市| 华坪县| 湖口县| 顺义区| 南岸区| 盱眙县| 巫山县| 乌兰察布市| 三江| 洛宁县| 榆中县|