找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Mathematical Analysis and Its Interdisciplinary Applications; Hemen Dutta,Ljubi?a D. R. Ko?inac,Hari M. Srivasta Book 20

[復(fù)制鏈接]
樓主: Washington
31#
發(fā)表于 2025-3-27 00:41:09 | 只看該作者
180 Keywords Geld- und W?hrungsrechty spaces. More precisely, if the maximal time of existence of solutions for these equations is finite, we demonstrate the explosion, near this instant, of some limits superior and integrals involving a specific usual Lebesgue spaces and, as a consequence, we prove the lower bounds related to Sobolev–Gevrey spaces.
32#
發(fā)表于 2025-3-27 01:26:17 | 只看該作者
33#
發(fā)表于 2025-3-27 05:35:06 | 只看該作者
34#
發(fā)表于 2025-3-27 10:16:26 | 只看該作者
35#
發(fā)表于 2025-3-27 16:35:32 | 只看該作者
https://doi.org/10.1007/978-3-658-28295-0generalized gradient and the Navier–Stokes type operator which are associated with hemivariational inequalities in the reflexive Orlicz–Sobolev spaces. Moreover, our study, in both aforementioned cases, is supplemented by similar results for the Stokes flows where the convective term is negligible.
36#
發(fā)表于 2025-3-27 19:18:44 | 只看該作者
180 Keywords Geld- und W?hrungsrechtn. We prove the existence, uniqueness, and convergence results together with the corresponding mechanical interpretation. We illustrate these results in the study of a one-dimensional example. Finally, we end this chapter with some concluding remarks.
37#
發(fā)表于 2025-3-27 22:13:54 | 只看該作者
Current Trends in Mathematical Analysis and Its Interdisciplinary Applications
38#
發(fā)表于 2025-3-28 04:11:12 | 只看該作者
39#
發(fā)表于 2025-3-28 09:02:00 | 只看該作者
Frictional Contact Problems for Steady Flow of Incompressible Fluids in Orlicz Spaces,nded domain with subdifferential boundary conditions in Orlicz spaces. Two general cases are investigated. First, we study the non-Newtonian fluid flow with a non-polynomial growth of the extra (viscous) part of the Cauchy stress tensor together with multivalued nonmonotone slip boundary conditions
40#
發(fā)表于 2025-3-28 12:11:25 | 只看該作者
Discrete Fourier Transform and Theta Function Identities,f the DFT Φ(.) expressed in terms of the theta functions. An extended version of the classical Watson addition formula and Riemann’s identity on theta functions is derived. Watson addition formula and Riemann’s identity are obtained as a particular case. An extensions of some classical identities co
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永仁县| 韶山市| 鹤岗市| 灌云县| 孟村| 重庆市| 陆川县| 会理县| 四会市| 吉安市| 易门县| 山东省| 多伦县| 昆山市| 长垣县| 临夏市| 灵山县| 肇源县| 商南县| 上饶县| 宜宾市| 闽侯县| 贵南县| 天台县| 新宁县| 承德市| 邵阳市| 新邵县| 丽江市| 蕉岭县| 裕民县| 藁城市| 新田县| 沧源| 成安县| 宜兴市| 杭州市| 揭东县| 日喀则市| 桦甸市| 海丰县|