找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Issues in Quantum Logic; Enrico G. Beltrametti,Bas C. Fraassen Book 1981 Springer Science+Business Media New York 1981 Minkowski s

[復(fù)制鏈接]
樓主: Monomania
11#
發(fā)表于 2025-3-23 13:33:29 | 只看該作者
Sequential Quantum Logication relation between . connected quantum mechanical sentences. These sentences can be interpreted by means of yes-no experiments (in the sense of Jauch and Piron) as tests for elementary propositions and by means of dialogic proof procedures for compound propositions.. Sequentially connected sente
12#
發(fā)表于 2025-3-23 17:03:30 | 只看該作者
13#
發(fā)表于 2025-3-23 20:23:34 | 只看該作者
14#
發(fā)表于 2025-3-24 00:51:49 | 只看該作者
Pakistan and Pakistani Himalayas,need we be realists? Again, no. But, although the two need not go together, in fact they have often done so: Hilary Putnam, using a lattice approach, and, more recently, Simon Kochen, using partial Boolean algebras, are two realists who come to mind. They see quantum theory as providing descriptions (in some sense of that word) of microsystems.
15#
發(fā)表于 2025-3-24 05:23:53 | 只看該作者
16#
發(fā)表于 2025-3-24 07:13:48 | 只看該作者
17#
發(fā)表于 2025-3-24 12:11:41 | 只看該作者
https://doi.org/10.1007/978-3-319-11538-2Let L be an orthomodular lattice (OML). It is well-known that there is no operation → definable in terms of lattice operations such that → satisfies most of the desirable conditions for a non-modal implication.. Some authors have come to the conclusion that perhaps the implication in quantum logic must be treated as the relation ≤ in L..
18#
發(fā)表于 2025-3-24 15:52:28 | 只看該作者
Yi Liu,Yefeng Ma,Qing Deng,Yi Liu,Hui ZhangThe multi-discipline of quantum logic (QL) has arisen from various attempts to formulate a theory of probability that is sufficiently general to deal with the probabilistic notions that arise in extant quantum mechanics (QM), and also sufficiently general to enable theorists to formulate and discuss alternative micro-physical theories.
19#
發(fā)表于 2025-3-24 20:51:19 | 只看該作者
20#
發(fā)表于 2025-3-24 23:09:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延津县| 项城市| 兖州市| 灵璧县| 上饶市| 长垣县| 盱眙县| 永平县| 寿阳县| 永登县| 新丰县| 抚顺市| 哈巴河县| 肃南| 额敏县| 开阳县| 阜南县| 西贡区| 罗源县| 宕昌县| 南漳县| 临潭县| 应用必备| 谷城县| 咸阳市| 北安市| 镇原县| 永顺县| 台北市| 高邮市| 恩施市| 南江县| 西宁市| 金堂县| 扎囊县| 庄浪县| 江川县| 广平县| 依安县| 宣化县| 尤溪县|