找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cubic Fields with Geometry; Samuel A. Hambleton,Hugh C. Williams Book 2018 Springer Nature Switzerland AG 2018 binary cubic forms.cubic fi

[復(fù)制鏈接]
樓主: 里程表
21#
發(fā)表于 2025-3-25 07:05:56 | 只看該作者
22#
發(fā)表于 2025-3-25 10:43:30 | 只看該作者
23#
發(fā)表于 2025-3-25 14:47:26 | 只看該作者
CMS Books in Mathematicshttp://image.papertrans.cn/d/image/240708.jpg
24#
發(fā)表于 2025-3-25 19:16:09 | 只看該作者
25#
發(fā)表于 2025-3-25 23:56:13 | 只看該作者
1613-5237 ls and disciplines which are applicable in the study of cubiThe objective of this book is to provide tools for solving problems which involve cubic number fields. Many such problems can be considered geometrically; both in terms of the geometry of numbers and geometry of the associated cubic Diophan
26#
發(fā)表于 2025-3-26 02:40:12 | 只看該作者
David Courpasson,Jean-Claude Thoenig any non-zero ideal of . can be represented uniquely as the product of prime ideals. We conclude with a review of the analytic class number formula and exhibit several results relating the class number of the cubic field to its regulator.
27#
發(fā)表于 2025-3-26 07:19:38 | 只看該作者
28#
發(fā)表于 2025-3-26 08:49:24 | 只看該作者
29#
發(fā)表于 2025-3-26 16:35:51 | 只看該作者
Introduction: Illuminating a Twilight Worldermination of the fundamental unit of a cubic field of negative discriminant or of a fundamental pair of units of a cubic field of positive discriminant. These problems reduce to the task of finding a particular relative minimum adjacent to 1 in a reduced lattice which we will discuss in the next chapter.
30#
發(fā)表于 2025-3-26 18:44:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林州市| 班戈县| 呼伦贝尔市| 东丽区| 张北县| 新竹市| 涟水县| 太湖县| 崇礼县| 鲁山县| 明水县| 阜康市| 梁山县| 阿合奇县| 曲周县| 卫辉市| 安康市| 尉氏县| 左云县| 襄城县| 清河县| 平原县| 康保县| 黑龙江省| 什邡市| 彰武县| 东港市| 绥中县| 乐都县| 平陆县| 宁安市| 大田县| 鹤山市| 石柱| 新竹市| 岗巴县| 涞水县| 平顺县| 富川| 凯里市| 琼结县|