找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cubic Fields with Geometry; Samuel A. Hambleton,Hugh C. Williams Book 2018 Springer Nature Switzerland AG 2018 binary cubic forms.cubic fi

[復(fù)制鏈接]
樓主: 里程表
11#
發(fā)表于 2025-3-23 12:55:42 | 只看該作者
Springer Nature Switzerland AG 2018
12#
發(fā)表于 2025-3-23 16:38:15 | 只看該作者
13#
發(fā)表于 2025-3-23 19:28:34 | 只看該作者
‘Anglo-America’ and Atlantic Europeany of the well-known properties of these numbers. In particular, we describe the cubic polynomial and develop many of the attributes of the cubic field generated by such a polynomial. This involves examining orders, the maximal order, integral bases of an order, the discriminant, and the performanc
14#
發(fā)表于 2025-3-24 00:49:47 | 只看該作者
David Courpasson,Jean-Claude Thoenig1-lattices over .. We define the ideal class group of . and the class number of .. We next examine the prime ideals in the maximal order and show that any non-zero ideal of . can be represented uniquely as the product of prime ideals. We conclude with a review of the analytic class number formula an
15#
發(fā)表于 2025-3-24 04:23:23 | 只看該作者
David Courpasson,Jean-Claude Thoenig which lead to the understanding of the ideal class group. Eisenstein deduced some interesting results on binary cubic forms. While those results were mostly concerned with composition, binary cubic forms are much more generally important in the study of cubic fields. Binary cubic forms are an essen
16#
發(fā)表于 2025-3-24 09:10:33 | 只看該作者
17#
發(fā)表于 2025-3-24 11:25:19 | 只看該作者
18#
發(fā)表于 2025-3-24 17:43:03 | 只看該作者
19#
發(fā)表于 2025-3-24 20:17:37 | 只看該作者
Introduction: Illuminating a Twilight Worldfield. We begin with a discussion of how Voronoi extended the idea of a simple continued fraction of a quadratic irrationality to that of a cubic irrationality. Next, we provide an account of relative minima in cubic lattices, reduced lattices (lattices in which 1 is a relative minimum), and chains
20#
發(fā)表于 2025-3-25 00:16:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 10:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥化市| 靖远县| 丰顺县| 财经| 安远县| 麦盖提县| 清镇市| 宜兰市| 榆中县| 东城区| 金阳县| 黄陵县| 夹江县| 湖州市| 紫云| 彭泽县| 宜兰市| 葫芦岛市| 临洮县| 桐城市| 九台市| 绥化市| 怀宁县| 应城市| 望奎县| 乌拉特后旗| 福泉市| 甘南县| 郴州市| 阿瓦提县| 永昌县| 剑河县| 漾濞| 应用必备| 徐闻县| 宜君县| 杭锦后旗| 翁源县| 潼南县| 宜城市| 松潘县|