找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cryptography and Lattices; International Confer Joseph H. Silverman Conference proceedings 2001 Springer-Verlag Berlin Heidelberg 2001 Latt

[復(fù)制鏈接]
樓主: Insularity
21#
發(fā)表于 2025-3-25 03:43:36 | 只看該作者
22#
發(fā)表于 2025-3-25 10:50:55 | 只看該作者
Behavioral Hardware Description Languages,ical sense. The increased efficiency of the new cryptosystems allows the use of bigger values for the security parameter, making the functions secure against the best cryptanalytic attacks, while keeping the size of the key even below the smallest key size for which lattice cryptosystems were ever conjectured to be hard to break.
23#
發(fā)表于 2025-3-25 12:08:15 | 只看該作者
Improving Lattice Based Cryptosystems Using the Hermite Normal Form,ical sense. The increased efficiency of the new cryptosystems allows the use of bigger values for the security parameter, making the functions secure against the best cryptanalytic attacks, while keeping the size of the key even below the smallest key size for which lattice cryptosystems were ever conjectured to be hard to break.
24#
發(fā)表于 2025-3-25 17:31:40 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:20 | 只看該作者
A 3-Dimensional Lattice Reduction Algorithm,ector in the lattice. The definition and the algorithm can be extended to any dimension. Elementary steps of our algorithm are rather different from those of the LLL-algorithm, which works in O(log. . binary operations without using fast integer arithmetic.
26#
發(fā)表于 2025-3-26 02:40:28 | 只看該作者
27#
發(fā)表于 2025-3-26 08:10:25 | 只看該作者
28#
發(fā)表于 2025-3-26 09:54:09 | 只看該作者
29#
發(fā)表于 2025-3-26 15:55:47 | 只看該作者
30#
發(fā)表于 2025-3-26 18:16:40 | 只看該作者
Fast Reduction of Ternary Quadratic Forms, form..Finally we describe how this algorithm can be generalized to higher dimensions. Lattice basis reduction and shortest vector computation in fixed dimension . can be done with . log. . bit-operations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿坝县| 海南省| 宁国市| 彭阳县| 满城县| 罗平县| 拜泉县| 宜阳县| 吉林市| 宁陵县| 山西省| 邢台县| 阆中市| 中西区| 兴化市| 平阴县| 兴义市| 宁陕县| 黑龙江省| 萍乡市| 彰化县| 恩平市| 沁水县| 安溪县| 信阳市| 遂宁市| 双柏县| 屏东县| 怀安县| 缙云县| 七台河市| 眉山市| 乐昌市| 信宜市| 当涂县| 农安县| 稻城县| 武冈市| 绥宁县| 江山市| 商河县|