找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cryptography and Computational Number Theory; Kwok-Yan Lam,Igor Shparlinski,Chaoping Xing Conference proceedings 2001 Springer Basel AG 20

[復(fù)制鏈接]
樓主: PEL
31#
發(fā)表于 2025-3-27 00:51:45 | 只看該作者
32#
發(fā)表于 2025-3-27 03:23:16 | 只看該作者
Counting the Number of Points on Affine Diagonal CurvesEvans and Williams [1] is to express the number of points in terms of generalized Jacobi sums, then to relate the Jacobi sums .(..,..) to cyclotomic numbers. In this article we present the direct elementary method for the number of points on the affine curves .. + .. = . over finite fields in terms
33#
發(fā)表于 2025-3-27 08:32:32 | 只看該作者
34#
發(fā)表于 2025-3-27 10:13:18 | 只看該作者
35#
發(fā)表于 2025-3-27 14:33:05 | 只看該作者
36#
發(fā)表于 2025-3-27 20:02:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:52:50 | 只看該作者
Algorithms for Generating, Testing and Proving Primes: A Surveyf primality tests of theoretical or practical relevance, the focus is on criteria for practical use..We give a new model for sources producing prime numbers with biased distributions and use it for measuring the security of biases against unknown attacks (adapted solutions to the discrete logarithm
38#
發(fā)表于 2025-3-28 05:12:58 | 只看該作者
The Hermite-Serret Algorithm and 122 + 332uares, given (or having already found) a square root ., say, of -1 modulo n. In brief, one applies the Euclidean algorithm to n and ., stopping at the first pair . and . of remainders that are smaller than . Then, lo! it happens that . = .. + ... Naturally, square roots of -1 properly different from
39#
發(fā)表于 2025-3-28 09:42:34 | 只看該作者
40#
發(fā)表于 2025-3-28 12:18:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎兰屯市| 石家庄市| 遂宁市| 香港 | 光山县| 博兴县| 吴川市| 蒲江县| 句容市| 巴林右旗| 堆龙德庆县| 汉川市| 个旧市| 奈曼旗| 望奎县| 天水市| 木兰县| 乐昌市| 嵩明县| 云霄县| 西藏| 嘉祥县| 宜都市| 托里县| 娄底市| 图片| 遂平县| 平谷区| 中山市| 曲阳县| 蒙山县| 古丈县| 尼玛县| 柳河县| 奉节县| 精河县| 古交市| 连城县| 夏邑县| 清远市| 宁陵县|