找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cryptography and Computational Number Theory; Kwok-Yan Lam,Igor Shparlinski,Chaoping Xing Conference proceedings 2001 Springer Basel AG 20

[復制鏈接]
樓主: PEL
31#
發(fā)表于 2025-3-27 00:51:45 | 只看該作者
32#
發(fā)表于 2025-3-27 03:23:16 | 只看該作者
Counting the Number of Points on Affine Diagonal CurvesEvans and Williams [1] is to express the number of points in terms of generalized Jacobi sums, then to relate the Jacobi sums .(..,..) to cyclotomic numbers. In this article we present the direct elementary method for the number of points on the affine curves .. + .. = . over finite fields in terms
33#
發(fā)表于 2025-3-27 08:32:32 | 只看該作者
34#
發(fā)表于 2025-3-27 10:13:18 | 只看該作者
35#
發(fā)表于 2025-3-27 14:33:05 | 只看該作者
36#
發(fā)表于 2025-3-27 20:02:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:52:50 | 只看該作者
Algorithms for Generating, Testing and Proving Primes: A Surveyf primality tests of theoretical or practical relevance, the focus is on criteria for practical use..We give a new model for sources producing prime numbers with biased distributions and use it for measuring the security of biases against unknown attacks (adapted solutions to the discrete logarithm
38#
發(fā)表于 2025-3-28 05:12:58 | 只看該作者
The Hermite-Serret Algorithm and 122 + 332uares, given (or having already found) a square root ., say, of -1 modulo n. In brief, one applies the Euclidean algorithm to n and ., stopping at the first pair . and . of remainders that are smaller than . Then, lo! it happens that . = .. + ... Naturally, square roots of -1 properly different from
39#
發(fā)表于 2025-3-28 09:42:34 | 只看該作者
40#
發(fā)表于 2025-3-28 12:18:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
隆昌县| 裕民县| 崇仁县| 额尔古纳市| 鄢陵县| 昆山市| 加查县| 临桂县| 阳曲县| 永靖县| 泾川县| 青州市| 涞源县| 台南市| 彭州市| 东城区| 奇台县| 安丘市| 蓬安县| 高邑县| 寿光市| 改则县| 保亭| 互助| 司法| 天祝| 疏附县| 冷水江市| 三原县| 德昌县| 巴中市| 乌兰察布市| 南丹县| 福泉市| 金阳县| 获嘉县| 云霄县| 扎兰屯市| 扬中市| 大宁县| 泾川县|