找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cryptography and Coding; 10th IMA Internation Nigel P. Smart Conference proceedings 2005 Springer-Verlag Berlin Heidelberg 2005 Signcryptio

[復(fù)制鏈接]
樓主: 平凡人
21#
發(fā)表于 2025-3-25 05:24:55 | 只看該作者
Lecture Notes in Computer Science128-bit and 256-bit keys, respectively. Since these ciphers use very simple key scheduling and controlled permutation (CP) for fast hardware encryption, they are suitable for wireless communications networks which require high-speed networks. Actually, these ciphers have better hardware performances
22#
發(fā)表于 2025-3-25 09:06:40 | 只看該作者
23#
發(fā)表于 2025-3-25 12:18:02 | 只看該作者
24#
發(fā)表于 2025-3-25 17:13:50 | 只看該作者
25#
發(fā)表于 2025-3-25 22:58:39 | 只看該作者
Wearable Transdermal Biosensorseven more recently Ding and Gower showed that PMI can be repaired with the Plus (+) method of externally adding as few as 10 randomly chosen quadratic polynomials. Since relatively few extra polynomials are added, the attack complexity of a Gr?bner basis attack on PMI+ will be roughly equal to that
26#
發(fā)表于 2025-3-26 00:55:42 | 只看該作者
https://doi.org/10.1007/978-981-99-8122-9In this paper we discuss the idea of block cipher embeddings and consider a natural algebraic framework for such constructions. In this approach we regard block cipher state spaces as algebras and study some properties of cipher extensions on larger algebras. We apply this framework to some well-known examples of AES embeddings.
27#
發(fā)表于 2025-3-26 05:58:42 | 只看該作者
An Algebraic Framework for Cipher EmbeddingsIn this paper we discuss the idea of block cipher embeddings and consider a natural algebraic framework for such constructions. In this approach we regard block cipher state spaces as algebras and study some properties of cipher extensions on larger algebras. We apply this framework to some well-known examples of AES embeddings.
28#
發(fā)表于 2025-3-26 08:34:13 | 只看該作者
29#
發(fā)表于 2025-3-26 14:17:26 | 只看該作者
30#
發(fā)表于 2025-3-26 17:24:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
刚察县| 张家港市| 长白| 延川县| 彭阳县| 梧州市| 商南县| 乌什县| 湖北省| 延长县| 来安县| 全椒县| 衡水市| 嫩江县| 高平市| 手游| 六盘水市| 白玉县| 镇平县| 靖江市| 信阳市| 车险| 界首市| 奇台县| 盐边县| 平潭县| 视频| 高要市| 玉田县| 金沙县| 稷山县| 德清县| 洛扎县| 新干县| 西和县| 信阳市| 山阳县| 株洲市| 盐亭县| 正镶白旗| 镇巴县|