找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coxeter Matroids; Alexandre V. Borovik,I. M. Gelfand,Neil White Textbook 20031st edition Birkh?user Boston 2003 Combinatorics.Finite.Latti

[復(fù)制鏈接]
查看: 7595|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:14:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Coxeter Matroids
編輯Alexandre V. Borovik,I. M. Gelfand,Neil White
視頻videohttp://file.papertrans.cn/240/239229/239229.mp4
概述Systematic, clearly written exposition with ample references to current research.Matroids are examined in terms of symmetric and finite reflection groups.Finite reflection groups and Coxeter groups ar
叢書名稱Progress in Mathematics
圖書封面Titlebook: Coxeter Matroids;  Alexandre V. Borovik,I. M. Gelfand,Neil White Textbook 20031st edition Birkh?user Boston 2003 Combinatorics.Finite.Latti
描述.Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry. This largely self-contained text provides an intuitive and interdisciplinary treatment of Coxeter matroids, a new and beautiful generalization of matroids which is based on a finite Coxeter group...Key topics and features:..* Systematic, clearly written exposition with ample references to current research.* Matroids are examined in terms of symmetric and finite reflection groups.* Finite reflection groups and Coxeter groups are developed from scratch.* The Gelfand-Serganova theorem is presented, allowing for a geometric interpretation of matroids and Coxeter matroids as convex polytopes with certain symmetry properties.* Matroid representations in buildings and combinatorial flag varieties are studied in the final chapter.* Many exercises throughout.* Excellent bibliography and index..Accessible to graduate students and research mathematicians alike, "Coxeter Matroids" can be used as an introductory survey, a graduate course text, or a reference volume..
出版日期Textbook 20031st edition
關(guān)鍵詞Combinatorics; Finite; Lattice; Permutation; Topology; algebra; geometry; mathematics; theorem
版次1
doihttps://doi.org/10.1007/978-1-4612-2066-4
isbn_softcover978-1-4612-7400-1
isbn_ebook978-1-4612-2066-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 2003
The information of publication is updating

書目名稱Coxeter Matroids影響因子(影響力)




書目名稱Coxeter Matroids影響因子(影響力)學(xué)科排名




書目名稱Coxeter Matroids網(wǎng)絡(luò)公開度




書目名稱Coxeter Matroids網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Coxeter Matroids被引頻次




書目名稱Coxeter Matroids被引頻次學(xué)科排名




書目名稱Coxeter Matroids年度引用




書目名稱Coxeter Matroids年度引用學(xué)科排名




書目名稱Coxeter Matroids讀者反饋




書目名稱Coxeter Matroids讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:23 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/c/image/239229.jpg
板凳
發(fā)表于 2025-3-22 02:43:54 | 只看該作者
https://doi.org/10.1007/978-1-4612-2066-4Combinatorics; Finite; Lattice; Permutation; Topology; algebra; geometry; mathematics; theorem
地板
發(fā)表于 2025-3-22 05:47:25 | 只看該作者
5#
發(fā)表于 2025-3-22 10:03:18 | 只看該作者
Coxeter Matroids978-1-4612-2066-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
6#
發(fā)表于 2025-3-22 13:44:30 | 只看該作者
Gabriele Siegert,Dieter Brecheisr group, namely, .. the hyperoctahedral group. The resulting structures are called symplectic matroids, and they are in some sense rather general Coxeter matroids, as they include ordinary matroids and a third type, orthogonal matroids, as special cases. This will also prepare us to tackle Coxeter matroids in full generality in the later chapters.
7#
發(fā)表于 2025-3-22 20:00:00 | 只看該作者
8#
發(fā)表于 2025-3-22 21:23:49 | 只看該作者
Wasserkonflikte sind Machtkonfliktenvolves permutation of rows and columns of a matrix. The rules these permutations obey are extremely simple; when axiomatized in group-theoretic terms, they become what are known as axioms for a .-pair (or a .) and very quickly lead to Coxeter groups appearing on the scene.
9#
發(fā)表于 2025-3-23 02:58:16 | 只看該作者
Gabriele Siegert,Dieter BrecheisLagrangian matroids are much better behaved than symplectic matroids. Indeed, as we shall see in this chapter, Lagrangian matroids are in several ways more closely related to ordinary matroids than are general symplectic matroids.
10#
發(fā)表于 2025-3-23 07:50:43 | 只看該作者
Lagrangian Matroids,Lagrangian matroids are much better behaved than symplectic matroids. Indeed, as we shall see in this chapter, Lagrangian matroids are in several ways more closely related to ordinary matroids than are general symplectic matroids.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德钦县| 珠海市| 中山市| 武义县| 桑日县| 体育| 东莞市| 辰溪县| 岳池县| 遂溪县| 丽水市| 化德县| 丰城市| 南丰县| 改则县| 色达县| 进贤县| 元谋县| 文昌市| 浙江省| 深州市| 加查县| 石家庄市| 漾濞| 五寨县| 南通市| 同仁县| 黄石市| 昌黎县| 灵宝市| 姚安县| 恭城| 大英县| 凤山市| 南部县| 扎鲁特旗| 武清区| 莱阳市| 西贡区| 扶沟县| 商南县|