找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Covering Walks in Graphs; Futaba Fujie,Ping Zhang Book 2014 Futaba Fujie, Ping Zhang 2014 Hamiltonian graph.spanning walk.traceable number

[復(fù)制鏈接]
樓主: 無緣無故
11#
發(fā)表于 2025-3-23 10:36:29 | 只看該作者
12#
發(fā)表于 2025-3-23 16:16:43 | 只看該作者
ving a cycle decomposition. In this chapter on closed edge-covering walks, the unsolved Eulerian Cycle Decomposition Conjecture is discussed as is irregular Eulerian walks, a concept emanating from the Chinese Postman Problem.
13#
發(fā)表于 2025-3-23 19:39:52 | 只看該作者
14#
發(fā)表于 2025-3-23 23:45:47 | 只看該作者
15#
發(fā)表于 2025-3-24 03:34:12 | 只看該作者
16#
發(fā)表于 2025-3-24 08:56:38 | 只看該作者
2191-8198 p between traceable concepts and Hamiltonian concepts are examined. Describes several variations of traceable numbers, which provide new frame works for several well-known Hamiltonian concepts and produce inter978-1-4939-0304-7978-1-4939-0305-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
17#
發(fā)表于 2025-3-24 12:37:23 | 只看該作者
Book 2014 numbers are introduced. Results are illustrated on these two concepts and the relationship between traceable concepts and Hamiltonian concepts are examined. Describes several variations of traceable numbers, which provide new frame works for several well-known Hamiltonian concepts and produce inter
18#
發(fā)表于 2025-3-24 17:21:33 | 只看該作者
Mamuka Dolidzession models in .. The resulting model parameters are discussed, as well as the assumptions of the models and interpretations of the model results. Since . can be helpful in the evaluation of some models, the final section in this chapter shows a . implementation of a bootstrapping example.
19#
發(fā)表于 2025-3-24 21:53:13 | 只看該作者
20#
發(fā)表于 2025-3-24 23:51:25 | 只看該作者
Christian Dachtlermmitments that are made in assuming this theoretic perspective is to believe that we acquire a knowledge that we can abstract and generalize. This theoretic perspective separates direct experience from representation. The representational perspective of knowledge, even though has been strongly criti
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙田区| 英山县| 龙陵县| 高雄市| 水城县| 赤壁市| 镇雄县| 南陵县| 卢氏县| 马龙县| 弋阳县| 乌什县| 莱芜市| 聂荣县| 新乡市| 昭通市| 宝坻区| 平山县| 乐安县| 桂林市| 剑川县| 中超| 桐庐县| 大关县| 芒康县| 潞城市| 博兴县| 开平市| 泸州市| 汉寿县| 中方县| 攀枝花市| 贺兰县| 原阳县| 桦川县| 建德市| 太保市| 赫章县| 天峨县| 田东县| 平阳县|