找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Counting and Configurations; Problems in Combinat Ji?í Herman,Radan Ku?era,Jaromír ?im?a Book 2003 Springer-Verlag New York 2003 Area.Combi

[復制鏈接]
樓主: choleric
11#
發(fā)表于 2025-3-23 11:49:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:11:59 | 只看該作者
Combinatorial Arithmetic,a great variety and diversity of such problems, which makes it difficult to attempt a methodical or an algorithmic approach to their solutions. This is all the more so, since the individual problems are relatively independent “research problems,” widely varying in their degrees of difficulty. They r
13#
發(fā)表于 2025-3-23 20:57:54 | 只看該作者
14#
發(fā)表于 2025-3-24 00:14:41 | 只看該作者
15#
發(fā)表于 2025-3-24 02:46:18 | 只看該作者
https://doi.org/10.1007/978-1-4757-3925-1Area; Combinatorics; algebra; combinatorial geometry; number theory
16#
發(fā)表于 2025-3-24 10:19:26 | 只看該作者
978-1-4419-3053-8Springer-Verlag New York 2003
17#
發(fā)表于 2025-3-24 11:14:06 | 只看該作者
18#
發(fā)表于 2025-3-24 15:35:53 | 只看該作者
Die Stadt, der Redakteur, die Zeitung,a great variety and diversity of such problems, which makes it difficult to attempt a methodical or an algorithmic approach to their solutions. This is all the more so, since the individual problems are relatively independent “research problems,” widely varying in their degrees of difficulty. They r
19#
發(fā)表于 2025-3-24 19:59:56 | 只看該作者
Die Stadt, der Redakteur, die Zeitung,ic work in this field moved quite far from the “naive” or elementary geometry practiced by the Greek mathematicians of around the beginning of our era, and their numerous successors in later times. Classically, the main focus of geometry has been on the . or . connected with properties of basic geom
20#
發(fā)表于 2025-3-25 02:06:16 | 只看該作者
CMS Books in Mathematicshttp://image.papertrans.cn/c/image/239124.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
应城市| 永嘉县| 古交市| 永春县| 上饶县| 乌审旗| 司法| 忻城县| 贵溪市| 镇雄县| 靖远县| 东城区| 繁峙县| 德清县| 年辖:市辖区| 碌曲县| 苍南县| 长泰县| 凤庆县| 海林市| 广东省| 乡宁县| 前郭尔| 曲阳县| 新巴尔虎右旗| 上栗县| 信宜市| 秀山| 山西省| 榆林市| 东海县| 营口市| 陈巴尔虎旗| 卓资县| 抚州市| 大田县| 陈巴尔虎旗| 桦川县| 栾城县| 琼结县| 稻城县|