找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Counting Lattice Paths Using Fourier Methods; Shaun Ault,Charles Kicey Book 2019 Springer Nature Switzerland AG 2019 Lattice Path.Discrete

[復(fù)制鏈接]
查看: 29784|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:47:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Counting Lattice Paths Using Fourier Methods
編輯Shaun Ault,Charles Kicey
視頻videohttp://file.papertrans.cn/240/239120/239120.mp4
概述Introduces a unique technique to count lattice paths by using the discrete Fourier transform.Explores the interconnection between combinatorics and Fourier methods.Motivates students to move from one-
叢書名稱Applied and Numerical Harmonic Analysis
圖書封面Titlebook: Counting Lattice Paths Using Fourier Methods;  Shaun Ault,Charles Kicey Book 2019 Springer Nature Switzerland AG 2019 Lattice Path.Discrete
描述This monograph introduces a novel and effective approach to counting lattice paths by using the discrete Fourier transform (DFT) as a type of periodic generating function. Utilizing a previously unexplored connection between combinatorics and Fourier analysis, this method will allow readers to move to higher-dimensional lattice path problems with ease. The technique is carefully developed in the first three chapters using the algebraic properties of the DFT, moving from one-dimensional problems to higher dimensions. In the following chapter, the discussion turns to geometric properties of the DFT in order to study the corridor state space. Each chapter poses open-ended questions and exercises to prompt further practice and future research. Two appendices are also provided, which cover complex variables and non-rectangular lattices, thus ensuring the text will be self-contained and serve as a valued reference..Counting Lattice Paths Using Fourier Methods. is ideal for upper-undergraduates and graduate students studying combinatorics or other areas of mathematics, as well as computer science or physics. Instructors will also find this a valuable resource for use in their seminars. Re
出版日期Book 2019
關(guān)鍵詞Lattice Path; Discrete Fourier Transform; Corridor Numbers; Complex Variables; Combinatorics
版次1
doihttps://doi.org/10.1007/978-3-030-26696-7
isbn_softcover978-3-030-26695-0
isbn_ebook978-3-030-26696-7Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Counting Lattice Paths Using Fourier Methods影響因子(影響力)




書目名稱Counting Lattice Paths Using Fourier Methods影響因子(影響力)學(xué)科排名




書目名稱Counting Lattice Paths Using Fourier Methods網(wǎng)絡(luò)公開度




書目名稱Counting Lattice Paths Using Fourier Methods網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Counting Lattice Paths Using Fourier Methods被引頻次




書目名稱Counting Lattice Paths Using Fourier Methods被引頻次學(xué)科排名




書目名稱Counting Lattice Paths Using Fourier Methods年度引用




書目名稱Counting Lattice Paths Using Fourier Methods年度引用學(xué)科排名




書目名稱Counting Lattice Paths Using Fourier Methods讀者反饋




書目名稱Counting Lattice Paths Using Fourier Methods讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:34:54 | 只看該作者
地板
發(fā)表于 2025-3-22 05:39:51 | 只看該作者
Shaun Ault,Charles KiceyIntroduces a unique technique to count lattice paths by using the discrete Fourier transform.Explores the interconnection between combinatorics and Fourier methods.Motivates students to move from one-
5#
發(fā)表于 2025-3-22 12:31:53 | 只看該作者
6#
發(fā)表于 2025-3-22 16:21:41 | 只看該作者
https://doi.org/10.1007/978-3-030-26696-7Lattice Path; Discrete Fourier Transform; Corridor Numbers; Complex Variables; Combinatorics
7#
發(fā)表于 2025-3-22 21:07:23 | 只看該作者
8#
發(fā)表于 2025-3-22 21:12:09 | 只看該作者
9#
發(fā)表于 2025-3-23 05:05:55 | 只看該作者
Das Ende der Kunst NeuplatonismusUsing operators and elementary Fourier methods, we analyze walks in one-dimensional bounded and unbounded lattices.
10#
發(fā)表于 2025-3-23 06:53:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 02:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海南省| 邯郸县| 虎林市| 正安县| 华宁县| 峨眉山市| 宜川县| 太白县| 会泽县| 监利县| 洮南市| 蓬溪县| 缙云县| 元江| 平安县| 秭归县| 同心县| 长汀县| 孟村| 鹤壁市| 锡林浩特市| 宁阳县| 峨眉山市| 祁连县| 镇坪县| 永吉县| 炉霍县| 南京市| 昌乐县| 兴宁市| 白城市| 新干县| 临沧市| 喀什市| 太仆寺旗| 通许县| 奎屯市| 金坛市| 沈丘县| 慈利县| 昌宁县|