找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cosserat Theories: Shells, Rods and Points; M. B. Rubin Book 2000 Springer Science+Business Media Dordrecht 2000 continuum mechanics.devel

[復制鏈接]
樓主: 銀河
21#
發(fā)表于 2025-3-25 05:55:26 | 只看該作者
Cosserat Rods,e in many applications. For example, the main supporting structures in buildings, and the connecting bars in trusses can be modeled as beams, whereas the curved reinforcement ribs of airplane wings and submarines, and the double helix of DNA molecules can be modeled as rods.
22#
發(fā)表于 2025-3-25 08:36:35 | 只看該作者
Introduction,entum are used to determine the present values of the mass density and this position vector. Also, the balance of angular momentum is used to place restrictions on the constitutive equations of the continuum (i.e. the symmetry of the stress tensor).
23#
發(fā)表于 2025-3-25 13:08:54 | 只看該作者
24#
發(fā)表于 2025-3-25 16:22:28 | 只看該作者
25#
發(fā)表于 2025-3-25 23:34:33 | 只看該作者
Introduction,ocation of each material point as a function of time. For the purely mechanical theory, the laws of conservation of mass and the balance of linear momentum are used to determine the present values of the mass density and this position vector. Also, the balance of angular momentum is used to place re
26#
發(fā)表于 2025-3-26 01:58:47 | 只看該作者
Basic Tensor Operations in Curvilinear Coordinates, observed in the physical world. Almost always it is necessary to describe the location of a material point in space relative to some fixed point and relative to some specified fixed axes. The specific choice of these axes remains arbitrary but it is usually guided by desire to simplify some aspect
27#
發(fā)表于 2025-3-26 06:06:48 | 只看該作者
Cosserat Shells,dy that is considered to be “thin” in one of its dimensions (see Fig. 4.1.1). In particular, the shell is characterized by its major surfaces (bottom and top) and its lateral surface. From another point of view, the shell is considered to be a material surface S which has some finite thickness bound
28#
發(fā)表于 2025-3-26 09:39:07 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:24 | 只看該作者
30#
發(fā)表于 2025-3-26 18:41:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
靖西县| 绥化市| 尼木县| 犍为县| 武威市| 宝应县| 阳信县| 宜川县| 平安县| 佛山市| 兰溪市| SHOW| 永修县| 香河县| 镇巴县| 武清区| 晋宁县| 长海县| 类乌齐县| 凤阳县| 布尔津县| 腾冲县| 乌拉特中旗| 巨野县| 新乐市| 四平市| 宜良县| 和硕县| 溆浦县| 长汀县| 乡宁县| 郸城县| 台江县| 六盘水市| 新巴尔虎左旗| 南丰县| 甘泉县| 香格里拉县| 江北区| 子洲县| 丰镇市|