找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cosmos DB for MongoDB Developers; Migrating to Azure C Manish Sharma Book 2018 Manish Sharma 2018 CosmosDB.GraphDB.MongoDB.DocumentDB.Table

[復制鏈接]
查看: 35476|回復: 48
樓主
發(fā)表于 2025-3-21 19:13:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cosmos DB for MongoDB Developers
副標題Migrating to Azure C
編輯Manish Sharma
視頻videohttp://file.papertrans.cn/239/238970/238970.mp4
概述First book covering the MongoDB API of Cosmos DB.Discusses integration of Azure Cosmos DB with Spark.Covers advanced features such as the multi-homing API and TTL using the Cosmos DB for MongoDB API
圖書封面Titlebook: Cosmos DB for MongoDB Developers; Migrating to Azure C Manish Sharma Book 2018 Manish Sharma 2018 CosmosDB.GraphDB.MongoDB.DocumentDB.Table
描述Learn Azure Cosmos DB and its MongoDB API with hands-on samples and advanced features such as the multi-homing API, geo-replication, custom indexing, TTL, request units (RU), consistency levels, partitioning, and much more. Each chapter explains Azure Cosmos DB’s features and functionalities by comparing it to MongoDB with coding samples.?.Cosmos DB for MongoDB Developers. starts with an overview of NoSQL and Azure Cosmos DB and moves on to demonstrate the difference between geo-replication of Azure Cosmos DB compared to MongoDB. Along the way you’ll cover subjects including indexing, partitioning, consistency, and sizing, all of which will help you understand the concepts of read units and how this calculation is derived from an existing MongoDB’s usage.?.The next part of the book shows you the process and strategies for migrating to Azure Cosmos DB. You will learn the day-to-day scenarios of using Azure Cosmos DB, its sizing strategies, and optimizing techniques for the MongoDB API. This information will help you when planning to migrate from MongoDB or if you would like to compare MongoDB to the Azure Cosmos DB MongoDB API before considering the switch..What You Will Learn.Migra
出版日期Book 2018
關鍵詞CosmosDB; GraphDB; MongoDB; DocumentDB; TableStorage; Azure; NoSql; Gremlin; Neo4J; Microsoft
版次1
doihttps://doi.org/10.1007/978-1-4842-3682-6
isbn_softcover978-1-4842-3681-9
isbn_ebook978-1-4842-3682-6
copyrightManish Sharma 2018
The information of publication is updating

書目名稱Cosmos DB for MongoDB Developers影響因子(影響力)




書目名稱Cosmos DB for MongoDB Developers影響因子(影響力)學科排名




書目名稱Cosmos DB for MongoDB Developers網(wǎng)絡公開度




書目名稱Cosmos DB for MongoDB Developers網(wǎng)絡公開度學科排名




書目名稱Cosmos DB for MongoDB Developers被引頻次




書目名稱Cosmos DB for MongoDB Developers被引頻次學科排名




書目名稱Cosmos DB for MongoDB Developers年度引用




書目名稱Cosmos DB for MongoDB Developers年度引用學科排名




書目名稱Cosmos DB for MongoDB Developers讀者反饋




書目名稱Cosmos DB for MongoDB Developers讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:39:37 | 只看該作者
Book 2018ios of using Azure Cosmos DB, its sizing strategies, and optimizing techniques for the MongoDB API. This information will help you when planning to migrate from MongoDB or if you would like to compare MongoDB to the Azure Cosmos DB MongoDB API before considering the switch..What You Will Learn.Migra
板凳
發(fā)表于 2025-3-22 02:33:34 | 只看該作者
lti-homing API and TTL using the Cosmos DB for MongoDB APILearn Azure Cosmos DB and its MongoDB API with hands-on samples and advanced features such as the multi-homing API, geo-replication, custom indexing, TTL, request units (RU), consistency levels, partitioning, and much more. Each chapter expla
地板
發(fā)表于 2025-3-22 06:48:09 | 只看該作者
5#
發(fā)表于 2025-3-22 12:27:17 | 只看該作者
6#
發(fā)表于 2025-3-22 15:31:39 | 只看該作者
Partitioning,database management systems (RDBMSs), this can occasionally be a nightmare, and it presents no less difficult a task in the realm of NoSQL too. In this chapter, you are going to learn how, using partitioning, Azure Cosmos DB scales databases.
7#
發(fā)表于 2025-3-22 19:39:42 | 只看該作者
Hans Georg Schachtschabel als Parlamentarier to access the system, but apart from that at the main location, the system performs badly, owing to latency issues. So, how do you ensure that a database is available? How do you ensure that the database is always deployed nearest to the relevant application? And how do you achieve the lowest possible latency?
8#
發(fā)表于 2025-3-23 00:30:55 | 只看該作者
9#
發(fā)表于 2025-3-23 02:41:57 | 只看該作者
Hans H. Nachtkamp,Gerlinde Sinnd maintain. The volume of data is often humongous and mostly unpredictable. In such cases, splitting data into multiple pieces while inserting and joining the tables during data retrieval will add excessive latency.
10#
發(fā)表于 2025-3-23 09:13:18 | 只看該作者
Sektorstruktur und Umweltpolitikcomputing capacity available from an on-premise machine or a virtual machine in the cloud. In the cloud, having a massive compute-capacity PaaS is the most desirable option, as, in this case, one needn’t worry about scalability, performance, and availability. All of these will be provided by the clo
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
峨眉山市| 张家界市| 平邑县| 灵宝市| 施甸县| 临夏县| 隆化县| 阿尔山市| 长武县| 普兰县| 五莲县| 丹东市| 林周县| 长岭县| 宾川县| 东山县| 九台市| 敖汉旗| 崇左市| 娄烦县| 蕲春县| 酉阳| 大田县| 南华县| 南皮县| 惠东县| 和硕县| 尤溪县| 绥滨县| 云阳县| 霍城县| 平遥县| 于田县| 资源县| 安顺市| 元朗区| 吉林省| 阿拉善左旗| 绥阳县| 博爱县| 洛隆县|