找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Core Concepts in Data Analysis: Summarization, Correlation and Visualization; Boris Mirkin Textbook 20111st edition Springer-Verlag London

[復(fù)制鏈接]
樓主: 臉紅
21#
發(fā)表于 2025-3-25 06:12:26 | 只看該作者
22#
發(fā)表于 2025-3-25 07:59:49 | 只看該作者
Hierarchical Clustering,lits conceptually, that is, using one feature at a time. The last section is devoted to the Single Link clustering, a popular method for extraction of elongated structures from the data. Relations between single link clustering and two popular graph-theoretic structures, the Minimum Spanning Tree (MST) and connected components, are explained.
23#
發(fā)表于 2025-3-25 13:34:52 | 只看該作者
Annalisa Bonfiglio,Danilo De Rossiata analysis problems is presented. The datasets are taken from various fields such as monitoring market towns, computer security protocols, bioinformatics, cognitive psychology. (iii)An overview of data visualization, its goals and some techniques is given.
24#
發(fā)表于 2025-3-25 17:48:33 | 只看該作者
25#
發(fā)表于 2025-3-25 20:20:49 | 只看該作者
26#
發(fā)表于 2025-3-26 01:07:07 | 只看該作者
Introduction: What Is Core,ata analysis problems is presented. The datasets are taken from various fields such as monitoring market towns, computer security protocols, bioinformatics, cognitive psychology. (iii)An overview of data visualization, its goals and some techniques is given.
27#
發(fā)表于 2025-3-26 07:12:52 | 只看該作者
2D Analysis: Correlation and Visualization of Two Features,dence, and Pearson’s chi-squared for two nominal variables; the latter is treated as a summary correlation measure, in contrast to the conventional view of it as a criterion of statistical independence. They all are applicable in the case of multidimensional data as well.
28#
發(fā)表于 2025-3-26 09:36:37 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:25 | 只看該作者
1863-7310 d to date..Explores methodical innovations of summarization .Core Concepts in Data Analysis: Summarization, Correlation and Visualization. .provides in-depth descriptions of those data analysis approaches that either summarize data (principal component analysis and clustering, including hierarchical
30#
發(fā)表于 2025-3-26 19:38:09 | 只看該作者
https://doi.org/10.1007/978-0-85729-287-2Clustering; Data Analysis; K-means; Principal component analysis; Visualization
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 10:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
团风县| 苍山县| 黎川县| 道孚县| 屏东市| 佳木斯市| 都昌县| 苍溪县| 金寨县| 寻乌县| 搜索| 三明市| 陵川县| 湘潭县| 依兰县| 江口县| 中宁县| 蛟河市| 郧西县| 大邑县| 怀安县| 获嘉县| 遵义县| 永吉县| 五原县| 岑溪市| 咸丰县| 台前县| 海阳市| 双鸭山市| 涟水县| 东台市| 邯郸市| 柳林县| 辽阳县| 华容县| 平塘县| 洛宁县| 旬阳县| 达日县| 黎平县|