找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Copulae in Mathematical and Quantitative Finance; Proceedings of the W Piotr Jaworski,Fabrizio Durante,Wolfgang Karl H?rd Conference procee

[復(fù)制鏈接]
查看: 7783|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:58:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance
副標(biāo)題Proceedings of the W
編輯Piotr Jaworski,Fabrizio Durante,Wolfgang Karl H?rd
視頻videohttp://file.papertrans.cn/239/238183/238183.mp4
概述A new reference book for copula-based stochastic models in quantitative finance.An up-to-date account about recent developments in copula-based financial models.Includes supplementary material:
叢書(shū)名稱(chēng)Lecture Notes in Statistics
圖書(shū)封面Titlebook: Copulae in Mathematical and Quantitative Finance; Proceedings of the W Piotr Jaworski,Fabrizio Durante,Wolfgang Karl H?rd Conference procee
描述.Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 1950s, copulas have gained considerable popularity in several fields of applied mathematics, especially finance and insurance. Today, copulas represent a well-recognized tool for market and credit models, aggregation of risks, and portfolio selection. Historically, the Gaussian copula model has been one of the most common models in credit risk. However, the recent financial crisis has underlined its limitations and drawbacks. In fact, despite their simplicity, Gaussian copula models severely underestimate the risk of the occurrence of joint extreme events. Recent theoretical investigations have put new tools for detecting and estimating dependence and risk (like tail dependence, time-varying models, etc) in the spotlight. All such investigations need to be further developed and promoted, a goal this book pursues. The book?includes surveys that provide an up-to-date account of essential aspects of copula models in quantitative finance, as well as the extended versions o
出版日期Conference proceedings 2013
關(guān)鍵詞Gaussian copula model; Random variables; Tail dependence; Time-varying models; quantitative finance
版次1
doihttps://doi.org/10.1007/978-3-642-35407-6
isbn_softcover978-3-642-35406-9
isbn_ebook978-3-642-35407-6Series ISSN 0930-0325 Series E-ISSN 2197-7186
issn_series 0930-0325
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance影響因子(影響力)




書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance被引頻次




書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance被引頻次學(xué)科排名




書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance年度引用




書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance年度引用學(xué)科排名




書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance讀者反饋




書(shū)目名稱(chēng)Copulae in Mathematical and Quantitative Finance讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:09:50 | 只看該作者
Strategic Planning of Spectrum and Services,listic graphical models in particular have been ignorant of the framework of copulas. At the same time, the complementing strengths of the two fields suggests the great fruitfulness of a synergy. The purpose of this paper is to survey recent copula-based constructions in the field of machine learnin
板凳
發(fā)表于 2025-3-22 04:05:59 | 只看該作者
地板
發(fā)表于 2025-3-22 07:11:45 | 只看該作者
5#
發(fā)表于 2025-3-22 11:17:14 | 只看該作者
6#
發(fā)表于 2025-3-22 13:20:37 | 只看該作者
7#
發(fā)表于 2025-3-22 21:06:49 | 只看該作者
Setting Up Physical Infrastructure,nctions. These copulas are then mixed with respect to a continuous distribution resulting in a nonsingular parametric copula.The Singular Mixture Copulas we construct have a Lebesgue density and in special cases even a closed form representation. Moreover, they have positive lower and upper tail dep
8#
發(fā)表于 2025-3-22 22:53:53 | 只看該作者
Strategic Planning of Spectrum and Services, a norm of this random vector, and it is often used in studying heavy-tail phenomena observed in data analysis in various fields, such as finance and insurance. Multivariate regular variation can be analyzed in terms of the intensity measure or spectral measure but can also be studied by using the c
9#
發(fā)表于 2025-3-23 03:27:33 | 只看該作者
Setting Up Physical Infrastructure,sented. Desirable statistical properties of dependent default times are introduced in an axiomatic manner and related to the unified framework. It is shown how commonly used models, stemming from quite different mathematical and economic motivations, can be translated into a multivariate frailty mod
10#
發(fā)表于 2025-3-23 05:38:03 | 只看該作者
Setting Up Physical Infrastructure,), which is a multivariate analogue of the univariate generalized linear models (GLMs). A unified framework of such regression models is established with the utility of Gaussian copula, accommodating discrete, continuous and mixed vector outcomes. Both full likelihood and composite likelihood estima
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆元县| 宁乡县| 巨野县| 顺平县| 昌乐县| 舟曲县| 临漳县| 桂林市| 汤原县| 京山县| 镇沅| 宜宾县| 胶南市| 乌什县| 建始县| 娱乐| 荣成市| 林周县| 怀远县| 田东县| 内丘县| 恭城| 门头沟区| 义马市| 广元市| 涿鹿县| 天镇县| 博客| 浪卡子县| 民和| 伊通| 唐山市| 丰县| 蓬莱市| 奈曼旗| 新平| 陵水| 仁寿县| 宁德市| 新安县| 通榆县|