找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Copula-Based Markov Models for Time Series; Parametric Inference Li-Hsien Sun,Xin-Wei Huang,Takeshi Emura Book 2020 The Editor(s) (if appli

[復(fù)制鏈接]
查看: 45016|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:46:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Copula-Based Markov Models for Time Series
副標(biāo)題Parametric Inference
編輯Li-Hsien Sun,Xin-Wei Huang,Takeshi Emura
視頻videohttp://file.papertrans.cn/239/238182/238182.mp4
概述Serves as introductory textbook on the analysis of time series data for students majoring in statistics and related fields.Includes numerous real-world data examples as well as R codes for implementat
叢書名稱SpringerBriefs in Statistics
圖書封面Titlebook: Copula-Based Markov Models for Time Series; Parametric Inference Li-Hsien Sun,Xin-Wei Huang,Takeshi Emura Book 2020 The Editor(s) (if appli
描述.This book provides statistical methodologies for time series data, focusing on copula-based Markov chain models for serially correlated time series. It also includes data examples from economics, engineering, finance, sport and other disciplines to illustrate the methods presented. An accessible textbook for students in the fields of economics, management, mathematics, statistics, and related fields wanting to gain insights into the statistical analysis of time series data using copulas, the book also features stand-alone chapters to appeal to researchers...As the subtitle suggests, the book highlights parametric models based on normal distribution, t-distribution, normal mixture distribution, Poisson distribution, and others. Presenting likelihood-based methods as the main statistical tools for fitting the models, the book details the development of computing techniques to find the maximum likelihood estimator. It also addresses statistical process control, as well as Bayesian and regression methods. Lastly, to help readers analyze their data, it provides computer codes (R codes) for most of the statistical methods. .
出版日期Book 2020
關(guān)鍵詞Copula; Maximum Likelihood Estimator; Serial Correlation; Markov Chain; Serial Dependence; Statistical Pr
版次1
doihttps://doi.org/10.1007/978-981-15-4998-4
isbn_softcover978-981-15-4997-7
isbn_ebook978-981-15-4998-4Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Copula-Based Markov Models for Time Series影響因子(影響力)




書目名稱Copula-Based Markov Models for Time Series影響因子(影響力)學(xué)科排名




書目名稱Copula-Based Markov Models for Time Series網(wǎng)絡(luò)公開度




書目名稱Copula-Based Markov Models for Time Series網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Copula-Based Markov Models for Time Series被引頻次




書目名稱Copula-Based Markov Models for Time Series被引頻次學(xué)科排名




書目名稱Copula-Based Markov Models for Time Series年度引用




書目名稱Copula-Based Markov Models for Time Series年度引用學(xué)科排名




書目名稱Copula-Based Markov Models for Time Series讀者反饋




書目名稱Copula-Based Markov Models for Time Series讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:34:55 | 只看該作者
地板
發(fā)表于 2025-3-22 04:42:35 | 只看該作者
Estimation Under Normal Mixture Models for Financial Time Series Data,assets, we select a normal mixture distribution for the marginal distribution. Based on the normal mixture distribution for the marginal distribution and the Clayton copula for serial dependence, we obtain the corresponding likelihood function. In order to obtain the maximum likelihood estimators, w
5#
發(fā)表于 2025-3-22 10:04:45 | 只看該作者
Bayesian Estimation Under the ,-Distribution for Financial Time Series,rkov chain. Due to the computational difficulty of obtaining maximum likelihood estimates, alternatively, we develop Bayesian inference using the empirical Bayes method through the resampling procedure. We provide a Metropolis–Hastings algorithm to simulate the posterior distribution. We also analyz
6#
發(fā)表于 2025-3-22 14:13:48 | 只看該作者
Control Charts of Mean by Using Copula Markov SPC and Conditional Distribution by Copula,(Commun Stat: Simul Comput 46:3067–3087, 2017) under serial dependence after accounting for the directional dependence by diverse copula functions. To illustrate the method proposed by Kim et al. (Commun Stat: Simul Comput, 2019), we revisit the case study of Major League Baseball (MLB), where the S
7#
發(fā)表于 2025-3-22 20:10:53 | 只看該作者
Copula Markov Models for Count Series with Excess Zeros,. In some cases, a specific count, say zero, may occur more often than usual. Additionally, serial dependence might be found among these counts if they are recorded over time. Overlooking the frequent occurrence of zeros and the serial dependence could lead to false inference. In this chapter, Marko
8#
發(fā)表于 2025-3-22 23:22:08 | 只看該作者
9#
發(fā)表于 2025-3-23 03:55:08 | 只看該作者
10#
發(fā)表于 2025-3-23 08:20:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹凤县| 阜新| 阳春市| 马尔康县| 普定县| 杂多县| 司法| 正宁县| 光泽县| 和硕县| 治县。| 锦屏县| 陆良县| 南宁市| 穆棱市| 扶风县| 晴隆县| 普安县| 贞丰县| 远安县| 龙门县| 皋兰县| 房山区| 洛川县| 无棣县| 巴中市| 迭部县| 龙江县| 衡阳县| 泗阳县| 徐州市| 铜川市| 泽州县| 铁岭县| 任丘市| 普格县| 拉萨市| 乌兰察布市| 舒兰市| 蕉岭县| 固始县|