找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convolutional Neural Networks with Swift for Tensorflow; Image Recognition an Brett Koonce Book 2021 Brett Koonce 2021 convolutional neural

[復(fù)制鏈接]
查看: 33957|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:19:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Convolutional Neural Networks with Swift for Tensorflow
副標(biāo)題Image Recognition an
編輯Brett Koonce
視頻videohttp://file.papertrans.cn/238/237882/237882.mp4
概述Task convolutional neural networks for image recognition.Apply Swift for Tensorflow throughout in order to learn the new framework by example.Hone the skills needed to tackle problems in the fields of
圖書封面Titlebook: Convolutional Neural Networks with Swift for Tensorflow; Image Recognition an Brett Koonce Book 2021 Brett Koonce 2021 convolutional neural
描述.Dive into and apply practical machine learning and dataset categorization techniques while learning Tensorflow and deep learning. This book uses convolutional neural networks to do image recognition?all in the familiar and easy to work with Swift language.?.It begins with a basic machine learning overview and then ramps up to neural networks and convolutions and how they work. Using Swift and Tensorflow, you‘ll perform data augmentation, build and train large networks, and build networks for mobile devices. You’ll also cover cloud training and the network you build can categorize greyscale data, such as mnist, to large scale modern approaches that can categorize large datasets, such as imagenet.??..Convolutional Neural Networks with Swift for Tensorflow?.uses a simple approach that adds progressive layers of complexity until you have arrived at the current state of the art for this field.?.What You‘ll Learn.Categorize and augment datasets.Build and train large networks, including via cloud solutions.Deploy complex systems to mobile devices.Who This Book Is For.Developers with Swift programming experience who would like to learn convolutional neural networks by example using Swift
出版日期Book 2021
關(guān)鍵詞convolutional neural networks; tensorflow; swift; machine learning; deep learning; google cloud
版次1
doihttps://doi.org/10.1007/978-1-4842-6168-2
isbn_softcover978-1-4842-6167-5
isbn_ebook978-1-4842-6168-2
copyrightBrett Koonce 2021
The information of publication is updating

書目名稱Convolutional Neural Networks with Swift for Tensorflow影響因子(影響力)




書目名稱Convolutional Neural Networks with Swift for Tensorflow影響因子(影響力)學(xué)科排名




書目名稱Convolutional Neural Networks with Swift for Tensorflow網(wǎng)絡(luò)公開度




書目名稱Convolutional Neural Networks with Swift for Tensorflow網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Convolutional Neural Networks with Swift for Tensorflow被引頻次




書目名稱Convolutional Neural Networks with Swift for Tensorflow被引頻次學(xué)科排名




書目名稱Convolutional Neural Networks with Swift for Tensorflow年度引用




書目名稱Convolutional Neural Networks with Swift for Tensorflow年度引用學(xué)科排名




書目名稱Convolutional Neural Networks with Swift for Tensorflow讀者反饋




書目名稱Convolutional Neural Networks with Swift for Tensorflow讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:07:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:30:04 | 只看該作者
Convolutional Neural Networks with Swift for TensorflowImage Recognition an
地板
發(fā)表于 2025-3-22 05:36:21 | 只看該作者
Convolutional Neural Networks with Swift for Tensorflow978-1-4842-6168-2
5#
發(fā)表于 2025-3-22 12:22:45 | 只看該作者
ResNet 34,apters, the difference between our 2D MNIST, CIFAR, and VGG networks is simply the number of blocks of 3x3 convolutions. Why stop at this point, though? Let‘s make even larger networks! Next, we‘re going to look at the ResNet family of networks, starting with ResNet 34.
6#
發(fā)表于 2025-3-22 16:24:26 | 只看該作者
ResNet 50,r results to a ResNet 50 baseline, and it is valuable as a reference point. As well, we can easily download the weights for ResNet 50 networks that have been trained on the Imagenet dataset and modify the last layers (called **retraining** or **transfer learning**) to quickly produce models to tackl
7#
發(fā)表于 2025-3-22 20:31:35 | 只看該作者
8#
發(fā)表于 2025-3-22 22:52:49 | 只看該作者
9#
發(fā)表于 2025-3-23 02:46:48 | 只看該作者
EfficientNet, going to look at different variants of the same basic idea of having the computer explore different neural network architectures for us. We will look at some of the research which builds up to our next neural network, EfficientNet, which was partially built using these techniques.
10#
發(fā)表于 2025-3-23 06:52:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 19:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茌平县| 新干县| 赤水市| 长顺县| 桂平市| 桃园市| 大荔县| 寿宁县| 梅河口市| 丹寨县| 宜阳县| 金门县| 香港| 原阳县| 班玛县| 胶州市| 昆明市| 新巴尔虎左旗| 双牌县| 淮南市| 揭东县| 冀州市| 阳东县| 环江| 济宁市| 海晏县| 托克托县| 荔浦县| 麻城市| 酉阳| 克拉玛依市| 绵阳市| 龙泉市| 武陟县| 江山市| 山阳县| 澜沧| 辽阳县| 武安市| 长乐市| 综艺|