找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity and Its Applications; Peter M. Gruber,J?rg M. Wills Book 1983 Springer Basel AG 1983 optimization.research.science and technolog

[復(fù)制鏈接]
樓主: 烤問
31#
發(fā)表于 2025-3-27 00:18:38 | 只看該作者
Promotion of Self-Regulated Learning,kerkerker [6]. As none of these sources deals specifically with lattices other than those of Minkowski-type (i.e. a ?-module with N generators in ?.) it seems worthwhile to trace the main developments there for lattices which have more algebraic structure. Even though these are often endowed with ar
32#
發(fā)表于 2025-3-27 03:29:03 | 只看該作者
33#
發(fā)表于 2025-3-27 09:09:28 | 只看該作者
34#
發(fā)表于 2025-3-27 09:55:04 | 只看該作者
35#
發(fā)表于 2025-3-27 16:55:50 | 只看該作者
https://doi.org/10.1007/0-306-47682-7on the other are closely related (see [1] §17). The former belongs to differential geometry, the latter to geometric convexity. Some theorems have a differential geometric version as well as a convexity version; these depend on each other.
36#
發(fā)表于 2025-3-27 18:31:01 | 只看該作者
37#
發(fā)表于 2025-3-28 00:37:44 | 只看該作者
Technology, Mathematucs, and industry, have been given in terms of properties of minimal and closest points, or by considering special retractions. Yet, the very strong connections existing among the above notions have not been considered in full. This present analysis shows that some results can be obtained from older ones, and other r
38#
發(fā)表于 2025-3-28 06:03:51 | 只看該作者
39#
發(fā)表于 2025-3-28 06:59:45 | 只看該作者
Technology, Mathematucs, and industry, in Banach spaces, this occurred in 1967, when Marc Rieffel wanted to do a thorough classroom presentation of the Radon-Nikod?m theorem for Banach space-valued measures. In formulating a condition on the range of such a measure which would be sufficient for the validity of the Radon-Nikodym theorem,
40#
發(fā)表于 2025-3-28 12:46:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
满城县| 九江县| 遵化市| 赣榆县| 始兴县| 古交市| 白银市| 班玛县| 宜都市| 深水埗区| 固始县| 海淀区| 陆丰市| 黔西| 金湖县| 建水县| 兴义市| 西青区| 黄山市| 镇宁| 兴义市| 华坪县| 和顺县| 古交市| 巴里| 双鸭山市| 大关县| 商南县| 萨迦县| 梓潼县| 宝兴县| 县级市| 昆山市| 西峡县| 随州市| 含山县| 增城市| 栖霞市| 宁乡县| 长治县| 阿荣旗|