找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity Methods in Hamiltonian Mechanics; Ivar Ekeland Book 1990 Springer-Verlag Berlin Heidelberg 1990 Area.Convexity.Functionals.Hamil

[復制鏈接]
查看: 32531|回復: 35
樓主
發(fā)表于 2025-3-21 19:39:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Convexity Methods in Hamiltonian Mechanics
編輯Ivar Ekeland
視頻videohttp://file.papertrans.cn/238/237856/237856.mp4
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Convexity Methods in Hamiltonian Mechanics;  Ivar Ekeland Book 1990 Springer-Verlag Berlin Heidelberg 1990 Area.Convexity.Functionals.Hamil
描述In the case of completely integrable systems, periodic solutions are found by inspection. For nonintegrable systems, such as the three-body problem in celestial mechanics, they are found by perturbation theory: there is a small parameter € in the problem, the mass of the perturbing body for instance, and for € = 0 the system becomes completely integrable. One then tries to show that its periodic solutions will subsist for € -# 0 small enough. Poincare also introduced global methods, relying on the topological properties of the flow, and the fact that it preserves the 2-form L~=l dPi 1 dqi‘ The most celebrated result he obtained in this direction is his last geometric theorem, which states that an area-preserving map of the annulus which rotates the inner circle and the outer circle in opposite directions must have two fixed points. And now another ancient theme appear: the least action principle. It states that the periodic solutions of a Hamiltonian system are extremals of a suitable integral over closed curves. In other words, the problem is variational. This fact was known to Fermat, and Maupertuis put it in the Hamiltonian formalism. In spite of its great aesthetic appeal, the
出版日期Book 1990
關鍵詞Area; Convexity; Functionals; Hamiltonian; Potential; eigenvalue; equation; form; hamiltonian system; mechani
版次1
doihttps://doi.org/10.1007/978-3-642-74331-3
isbn_softcover978-3-642-74333-7
isbn_ebook978-3-642-74331-3Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer-Verlag Berlin Heidelberg 1990
The information of publication is updating

書目名稱Convexity Methods in Hamiltonian Mechanics影響因子(影響力)




書目名稱Convexity Methods in Hamiltonian Mechanics影響因子(影響力)學科排名




書目名稱Convexity Methods in Hamiltonian Mechanics網絡公開度




書目名稱Convexity Methods in Hamiltonian Mechanics網絡公開度學科排名




書目名稱Convexity Methods in Hamiltonian Mechanics被引頻次




書目名稱Convexity Methods in Hamiltonian Mechanics被引頻次學科排名




書目名稱Convexity Methods in Hamiltonian Mechanics年度引用




書目名稱Convexity Methods in Hamiltonian Mechanics年度引用學科排名




書目名稱Convexity Methods in Hamiltonian Mechanics讀者反饋




書目名稱Convexity Methods in Hamiltonian Mechanics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:09:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:24:52 | 只看該作者
978-3-642-74333-7Springer-Verlag Berlin Heidelberg 1990
地板
發(fā)表于 2025-3-22 06:51:01 | 只看該作者
https://doi.org/10.1007/978-1-349-00207-8Consider a system of . linear equations with continuous . -periodic coefficients: . where . (.) is a real . × . matrix, depending continuously on . ∈ ? such that: ..
5#
發(fā)表于 2025-3-22 09:01:50 | 只看該作者
6#
發(fā)表于 2025-3-22 14:07:00 | 只看該作者
7#
發(fā)表于 2025-3-22 20:57:33 | 只看該作者
8#
發(fā)表于 2025-3-23 01:02:53 | 只看該作者
Manufacturing a Climate of Fear,The fixed-energy problems are the most interesting (and the most difficult) in the theory, because of their geometric significance. Many are still unsolved, and we conclude this chapter by listing the most important ones.
9#
發(fā)表于 2025-3-23 03:09:31 | 只看該作者
10#
發(fā)表于 2025-3-23 06:02:15 | 只看該作者
Convex Hamiltonian Systems,We start from a . (., .*, 〈·,·〉), that is, two real vector spaces . and .*, and a bilinear map (.,.*) → 〈.,.*〉 into ? which separates points: ..
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-25 16:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阜康市| 尚义县| 盐城市| 大连市| 鄱阳县| 静海县| 紫金县| 紫阳县| 沁水县| 红安县| 海门市| 瑞昌市| 彭泽县| 读书| 嘉定区| 进贤县| 隆德县| 晴隆县| 湄潭县| 安宁市| 涞水县| 襄垣县| 屯昌县| 平凉市| 望谟县| 洛南县| 济宁市| 贵港市| 贵阳市| 平阴县| 桐柏县| 成都市| 隆安县| 阿瓦提县| 班玛县| 乌兰县| 称多县| 通许县| 淳化县| 东阿县| 汕头市|