找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex and Starlike Mappings in Several Complex Variables; Sheng Gong Book 1998 Springer Science+Business Media Dordrecht 1998 Convexity.D

[復(fù)制鏈接]
樓主: Racket
11#
發(fā)表于 2025-3-23 09:55:56 | 只看該作者
12#
發(fā)表于 2025-3-23 15:23:55 | 只看該作者
13#
發(fā)表于 2025-3-23 20:19:06 | 只看該作者
The geometrical properties for holomorphic convex mappings on the unit ball,The purpose of this chapter is to consider some geometrical properties of holomorphic convex mappings on the unit ball.
14#
發(fā)表于 2025-3-23 23:35:42 | 只看該作者
The distortion theorem for holomorphic convex and starlike mappings, theorems as determinant distortion theorems. In this chapter, we will give the concrete form of the determinant distortion theorem for holomorphic convex and starlike mappings on bounded symmetric domains.
15#
發(fā)表于 2025-3-24 05:29:43 | 只看該作者
16#
發(fā)表于 2025-3-24 07:03:25 | 只看該作者
978-94-010-6191-9Springer Science+Business Media Dordrecht 1998
17#
發(fā)表于 2025-3-24 11:17:27 | 只看該作者
Neuere Aspekte der Krebsentstehungspect to .. if for any point . ∈ . (Ω), the line segment joining .. and . lies in . (Ω). A convex mapping is a starlike mapping. Actually, we may define a convex mapping as a mapping that is starlike with respect to any interior point of . (Ω). In this book, we usually assume that . (0) = 0 and that
18#
發(fā)表于 2025-3-24 17:28:04 | 只看該作者
Supraleitung in der Nachrichtentechnik, theorems as determinant distortion theorems. In this chapter, we will give the concrete form of the determinant distortion theorem for holomorphic convex and starlike mappings on bounded symmetric domains.
19#
發(fā)表于 2025-3-24 21:24:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:11 | 只看該作者
Supraleitung in der Nachrichtentechnik, theorems as determinant distortion theorems. In this chapter, we will give the concrete form of the determinant distortion theorem for holomorphic convex and starlike mappings on bounded symmetric domains.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安丘市| 五指山市| 观塘区| 濮阳市| 巴青县| 西丰县| 阳山县| 永仁县| 四会市| 洪江市| 泗洪县| 车险| 马尔康县| 金溪县| 高邮市| 东宁县| 龙陵县| 边坝县| 珲春市| 厦门市| 内黄县| 武定县| 杭锦旗| 农安县| 九龙坡区| 寿阳县| 景德镇市| 双柏县| 大荔县| 荃湾区| 霸州市| 商水县| 黔西县| 重庆市| 南木林县| 高平市| 石城县| 巴南区| 浠水县| 微山县| 桦川县|