找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Springer Basel AG 1998 Differential topology.Manifold.Topology.diffe

[復制鏈接]
樓主: Guffaw
41#
發(fā)表于 2025-3-28 16:06:22 | 只看該作者
Tony Bridgeman,P. C. Chatwin,C. Plumpton - . ∥ < .. Simply put, the problem is to .°-approximate the continuous map .: [0,1] → .., whose derivatives lie in the convex hull of . a.e., by a continuous map . whose derivatives lie in the set . a.e.
42#
發(fā)表于 2025-3-28 19:58:33 | 只看該作者
43#
發(fā)表于 2025-3-29 02:54:06 | 只看該作者
Introduction,overing homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space.
44#
發(fā)表于 2025-3-29 04:18:52 | 只看該作者
Analytic Theory,tions Γ(.) is identified naturally with .°(.,..). Let . ∈ Γ(.). Employing the splitting of ., one defines the derivative map ?.. : . → .. where . ∈ [0,1] and ?. = ?/?.. A section . ∈ Γ(.) is .. in . if ?.. ∈ Γ(.). Let ∥ ∥ be the sup-norm on .°(., ..).
45#
發(fā)表于 2025-3-29 10:32:44 | 只看該作者
46#
發(fā)表于 2025-3-29 13:11:09 | 只看該作者
Hans Müller-Steinhagen Prof. Dr.-Ing.es of 1-jets .. since in local coordinates first order derivatives are all pure. As mentioned in the introduction to Chapter IV, by suitable local changes of coordinates it is possible to apply this technique also in the case of open, ample relations in 2-jet spaces .., although we have not attempted to develop the details in this book.
47#
發(fā)表于 2025-3-29 17:38:06 | 只看該作者
Michael Kleiber Dr.,Ralph Joh Dr. rer. Nat.omic. The .-principle is required to be a relative condition in the following sense. Let . ? . be closed and suppose α is holonomic on .: there is a ..-section . ∈ Γ(.) such that . = .. ∈ Γ.(.(.)). Then in addition we require that for all . ∈ [0,1], ..= α ∈ Γ.(.) (constant homotopy over .).
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
银川市| 全南县| 乃东县| 铜鼓县| 红河县| 昌图县| 台北县| 同德县| 阳城县| 甘肃省| 青神县| 安康市| 木兰县| 沙雅县| 诏安县| 德惠市| 丰台区| 上饶市| 体育| 沈阳市| 化德县| 志丹县| 胶州市| 黔西| 冀州市| 胶南市| 城固县| 卢湾区| 桃园县| 通辽市| 城口县| 聊城市| 金华市| 大埔区| 乌什县| 苗栗县| 克拉玛依市| 类乌齐县| 南昌市| 阳江市| 三原县|