找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Springer Basel AG 1998 Differential topology.Manifold.Topology.diffe

[復(fù)制鏈接]
樓主: Guffaw
41#
發(fā)表于 2025-3-28 16:06:22 | 只看該作者
Tony Bridgeman,P. C. Chatwin,C. Plumpton - . ∥ < .. Simply put, the problem is to .°-approximate the continuous map .: [0,1] → .., whose derivatives lie in the convex hull of . a.e., by a continuous map . whose derivatives lie in the set . a.e.
42#
發(fā)表于 2025-3-28 19:58:33 | 只看該作者
43#
發(fā)表于 2025-3-29 02:54:06 | 只看該作者
Introduction,overing homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space.
44#
發(fā)表于 2025-3-29 04:18:52 | 只看該作者
Analytic Theory,tions Γ(.) is identified naturally with .°(.,..). Let . ∈ Γ(.). Employing the splitting of ., one defines the derivative map ?.. : . → .. where . ∈ [0,1] and ?. = ?/?.. A section . ∈ Γ(.) is .. in . if ?.. ∈ Γ(.). Let ∥ ∥ be the sup-norm on .°(., ..).
45#
發(fā)表于 2025-3-29 10:32:44 | 只看該作者
46#
發(fā)表于 2025-3-29 13:11:09 | 只看該作者
Hans Müller-Steinhagen Prof. Dr.-Ing.es of 1-jets .. since in local coordinates first order derivatives are all pure. As mentioned in the introduction to Chapter IV, by suitable local changes of coordinates it is possible to apply this technique also in the case of open, ample relations in 2-jet spaces .., although we have not attempted to develop the details in this book.
47#
發(fā)表于 2025-3-29 17:38:06 | 只看該作者
Michael Kleiber Dr.,Ralph Joh Dr. rer. Nat.omic. The .-principle is required to be a relative condition in the following sense. Let . ? . be closed and suppose α is holonomic on .: there is a ..-section . ∈ Γ(.) such that . = .. ∈ Γ.(.(.)). Then in addition we require that for all . ∈ [0,1], ..= α ∈ Γ.(.) (constant homotopy over .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东莞市| 张家港市| 都匀市| 阜平县| 来凤县| 东乡县| 盈江县| 政和县| 玛曲县| 浦县| 克什克腾旗| 泸水县| 鄢陵县| 永宁县| 诸暨市| 雷州市| 海兴县| 和平县| 康马县| 临高县| 肥城市| 竹溪县| 宜宾县| 北票市| 广丰县| 来凤县| 东乡县| 封丘县| 无锡市| 临城县| 甘德县| 屏山县| 达日县| 焦作市| 黄浦区| 亚东县| 莲花县| 阿克| 梅州市| 双桥区| 乌鲁木齐县|