找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations; Simon Markfelder Book 2021 The Editor(s) (if applicable)

[復制鏈接]
樓主: 使無罪
21#
發(fā)表于 2025-3-25 04:37:33 | 只看該作者
Preparation for Applying Convex Integration to Compressible EulerBefore we implement convex integration in the context of the barotropic Euler system in Chap. ., we prepare some ingredients needed for convex integration in this chapter. In Sect. . we adjust the problem in such a way that we can apply convex integration.
22#
發(fā)表于 2025-3-25 07:54:11 | 只看該作者
Implementation of Convex IntegrationOur goal in this chapter is to prove the main result of this book, namely Theorem .. This theorem can be seen as a “compressible analogue” of a result by De Lellis and Székelyhidi, see [., Proposition 2] or [., Proposition 2.4].
23#
發(fā)表于 2025-3-25 13:31:46 | 只看該作者
24#
發(fā)表于 2025-3-25 19:54:07 | 只看該作者
Riemann Initial Data in Two Space Dimensions for Isentropic EulerIn this chapter we consider the isentropic Euler equations – this means barotropic with the particular pressure law (.) – on the whole two-dimensional space, i.e. .. Keep in mind the definition of admissible weak solutions to the corresponding initial value problems, namely Definition ..
25#
發(fā)表于 2025-3-25 22:17:00 | 只看該作者
26#
發(fā)表于 2025-3-26 03:54:15 | 只看該作者
27#
發(fā)表于 2025-3-26 07:44:21 | 只看該作者
0075-8434 hyperbolic conservation lawsThis book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was app
28#
發(fā)表于 2025-3-26 10:16:25 | 只看該作者
0075-8434 integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial bounda978-3-030-83784-6978-3-030-83785-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
29#
發(fā)表于 2025-3-26 14:15:27 | 只看該作者
Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations
30#
發(fā)表于 2025-3-26 19:14:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
遂溪县| 元阳县| 凤台县| 依兰县| 广德县| 庆安县| 呼伦贝尔市| 徐闻县| 松阳县| 盐城市| 芷江| 长沙县| 邢台县| 茂名市| 镇安县| 萝北县| 察雅县| 古交市| 增城市| 芷江| 盐城市| 古蔺县| 绥江县| 固阳县| 永泰县| 文登市| 四平市| 晋宁县| 临城县| 翁牛特旗| 祁连县| 大石桥市| 富宁县| 西和县| 左云县| 乌拉特中旗| 微山县| 若尔盖县| 岳西县| 六安市| 永修县|