找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Heinz H. Bauschke,Patrick L. Combettes Book 2017Latest edition Springer In

[復制鏈接]
樓主: ODE
21#
發(fā)表于 2025-3-25 04:01:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:11:21 | 只看該作者
23#
發(fā)表于 2025-3-25 12:19:53 | 只看該作者
24#
發(fā)表于 2025-3-25 18:44:10 | 只看該作者
,Fenchel–Rockafellar Duality,Of central importance in convex analysis are conditions guaranteeing that the conjugate of a sum is the infimal convolution of the conjugates. The main result in this direction is a theorem due to Attouch and Brézis. In turn, it gives rise to the Fenchel–Rockafellar duality framework for convex optimization problems.
25#
發(fā)表于 2025-3-25 21:58:06 | 只看該作者
26#
發(fā)表于 2025-3-26 02:59:04 | 只看該作者
Convex Analysis and Monotone Operator Theory in Hilbert Spaces978-3-319-48311-5Series ISSN 1613-5237 Series E-ISSN 2197-4152
27#
發(fā)表于 2025-3-26 05:23:58 | 只看該作者
https://doi.org/10.1057/9781137508416asserts that every nonempty closed convex subset . of . is a Chebyshev set, i.e., that every point in . possesses a unique best approximation from ., and which provides a characterization of this best approximation.
28#
發(fā)表于 2025-3-26 08:47:31 | 只看該作者
https://doi.org/10.1057/9781137508416lems in nonlinear analysis reduce to finding fixed points of nonexpansive operators. In this chapter, we discuss nonexpansiveness and several variants. The properties of the fixed point sets of nonexpansive operators are investigated, in particular in terms of convexity.
29#
發(fā)表于 2025-3-26 15:50:18 | 只看該作者
https://doi.org/10.1057/9781137508416quences possess attractive properties that simplify the analysis of their asymptotic behavior. In this chapter, we provide the basic theory for Fejér monotone sequences and apply it to obtain in a systematic fashion convergence results for various classical iterations involving (quasi)nonexpansive operators.
30#
發(fā)表于 2025-3-26 19:23:44 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
嘉义县| 班戈县| 泸溪县| 清水县| 朝阳市| 顺平县| 宁德市| 名山县| 新乡县| 临城县| 阿拉善左旗| 五指山市| 连江县| 禄劝| 惠水县| 象州县| 昌宁县| 安义县| 清苑县| 阳原县| 东乡族自治县| 通化县| 墨玉县| 昌邑市| 吴旗县| 利辛县| 定日县| 丘北县| 西城区| 南澳县| 神木县| 黎城县| 安徽省| 东莞市| 明星| 闽清县| 玉田县| 广州市| 大竹县| 平谷区| 富平县|