找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Analysis and Global Optimization; Hoang Tuy Book 19981st edition Springer Science+Business Media Dordrecht 1998 Approximation.Mathe

[復制鏈接]
樓主: 郊區(qū)
21#
發(fā)表于 2025-3-25 03:26:32 | 只看該作者
22#
發(fā)表于 2025-3-25 10:28:55 | 只看該作者
23#
發(fā)表于 2025-3-25 14:53:40 | 只看該作者
24#
發(fā)表于 2025-3-25 16:00:35 | 只看該作者
25#
發(fā)表于 2025-3-25 21:35:58 | 只看該作者
https://doi.org/10.1057/9781137393296nvex problems. The second aspect is the degree of nonconvexity, i.e. the extent to which the variables are nonconvex. This last Chapter is devoted to nonconvex optimization problems which involve only linear or quadratic functions, i.e. in a sense functions with lowest degree of nonconvexity.
26#
發(fā)表于 2025-3-26 02:00:30 | 只看該作者
27#
發(fā)表于 2025-3-26 07:42:29 | 只看該作者
1571-568X plays an essential role in the development of globaloptimization methods. This book develops a coherent and rigoroustheory of deterministic global optimization from this point of view.Part I constitutes an introduction to convex analysis, with anemphasis on concepts, properties and results particul
28#
發(fā)表于 2025-3-26 09:28:50 | 只看該作者
Value-Based Working Capital Managementroblems, this approach is sometimes also called a .. It should be noted, however, that in an outer approximation procedure cuts are always conjunctive, i.e. the polyhedron resulting from the cuts is always the intersection of all the cuts performed.
29#
發(fā)表于 2025-3-26 12:41:31 | 只看該作者
Outer and Inner Approximationroblems, this approach is sometimes also called a .. It should be noted, however, that in an outer approximation procedure cuts are always conjunctive, i.e. the polyhedron resulting from the cuts is always the intersection of all the cuts performed.
30#
發(fā)表于 2025-3-26 18:04:11 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
铅山县| 安溪县| 霍山县| 连南| 中宁县| 启东市| 井冈山市| 萝北县| 鞍山市| 梓潼县| 呼伦贝尔市| 上虞市| 奉化市| 林西县| 大荔县| 江津市| 渑池县| 浑源县| 扎兰屯市| 乐东| 瑞安市| 红河县| 稻城县| 高阳县| 囊谦县| 阳信县| 康马县| 勃利县| 普定县| 定襄县| 康定县| 绍兴县| 承德市| 恭城| 乡城县| 津南区| 康乐县| 普兰店市| 隆德县| 垣曲县| 忻城县|