找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convergence and Summability of Fourier Transforms and Hardy Spaces; Ferenc Weisz Book 2017 Springer International Publishing AG 2017 Fejér

[復(fù)制鏈接]
樓主: Orthosis
21#
發(fā)表于 2025-3-25 05:28:32 | 只看該作者
One-Dimensional Hardy Spacesein [308, 309], Stein and Weiss [311], Lu [233], Uchiyama [340] and Grafakos [152]. Beyond these, the Hardy spaces have been introduced for martingales as well (see e.g. Garsia [127], Neveu [260], Dellacherie and Meyer [85, 86], Long [232] and Weisz [347]).
22#
發(fā)表于 2025-3-25 08:15:56 | 只看該作者
23#
發(fā)表于 2025-3-25 12:46:05 | 只看該作者
2. Semiconvex Hulls of Compact Sets,similar results as in Chap.?. For the restricted convergence, we use the Hardy space . and for the unrestricted .. We show that both maximal operators are bounded from the corresponding Hardy space to ., which implies the almost everywhere convergence. In both cases, the set of convergence is characterized as two types of Lebesgue points.
24#
發(fā)表于 2025-3-25 17:37:12 | 只看該作者
25#
發(fā)表于 2025-3-25 20:38:24 | 只看該作者
26#
發(fā)表于 2025-3-26 01:15:53 | 只看該作者
27#
發(fā)表于 2025-3-26 06:23:02 | 只看該作者
https://doi.org/10.1007/979-8-8688-0500-4 analogous results to those of Sections?.–. for higher dimensions. In the first section, we introduce the Fourier transform for functions and for tempered distributions and give the most important results. Since these proofs are very similar to those of the one-dimensional ones, we omit the proofs.
28#
發(fā)表于 2025-3-26 08:52:21 | 只看該作者
https://doi.org/10.1007/979-8-8688-0500-4higher dimensional Fourier transforms. As in the literature, we investigate the three cases . = 1, . = 2 and . = .. The other type of summability, the so-called rectangular summability, will be investigated in the next chapter. Both types are general summability methods defined by a function .. We w
29#
發(fā)表于 2025-3-26 16:02:45 | 只看該作者
30#
發(fā)表于 2025-3-26 19:14:31 | 只看該作者
https://doi.org/10.1007/978-3-319-56814-0Fejér summability; fourier analysis; hardy spaces; Lebesgue points; strong summability; harmonic analysis
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 13:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
体育| 东源县| 阿城市| 西和县| 弥勒县| 渭南市| 汉寿县| 康定县| 惠来县| 海淀区| 深圳市| 恭城| 嘉定区| 宜章县| 乌苏市| 霍邱县| 叙永县| 太保市| 留坝县| 岳阳市| 汽车| 宁波市| 固镇县| 鸡泽县| 新平| 综艺| 峨边| 黄石市| 和林格尔县| 江川县| 河津市| 灵石县| 东方市| 澄江县| 平潭县| 安吉县| 舟山市| 永济市| 綦江县| 天峻县| 时尚|