找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convergence Structures and Applications to Functional Analysis; R. Beattie,H.-P. Butzmann Book 2002 Springer Science+Business Media Dordre

[復(fù)制鏈接]
查看: 13636|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:19:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Convergence Structures and Applications to Functional Analysis
編輯R. Beattie,H.-P. Butzmann
視頻videohttp://file.papertrans.cn/238/237736/237736.mp4
圖書封面Titlebook: Convergence Structures and Applications to Functional Analysis;  R. Beattie,H.-P. Butzmann Book 2002 Springer Science+Business Media Dordre
出版日期Book 2002
關(guān)鍵詞Vector space; function space; functional analysis; topological group; topology
版次1
doihttps://doi.org/10.1007/978-94-015-9942-9
isbn_softcover978-90-481-5994-9
isbn_ebook978-94-015-9942-9
copyrightSpringer Science+Business Media Dordrecht 2002
The information of publication is updating

書目名稱Convergence Structures and Applications to Functional Analysis影響因子(影響力)




書目名稱Convergence Structures and Applications to Functional Analysis影響因子(影響力)學(xué)科排名




書目名稱Convergence Structures and Applications to Functional Analysis網(wǎng)絡(luò)公開度




書目名稱Convergence Structures and Applications to Functional Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Convergence Structures and Applications to Functional Analysis被引頻次




書目名稱Convergence Structures and Applications to Functional Analysis被引頻次學(xué)科排名




書目名稱Convergence Structures and Applications to Functional Analysis年度引用




書目名稱Convergence Structures and Applications to Functional Analysis年度引用學(xué)科排名




書目名稱Convergence Structures and Applications to Functional Analysis讀者反饋




書目名稱Convergence Structures and Applications to Functional Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:25:29 | 只看該作者
Uniform convergence spaces,e convergence generalization of uniform spaces, are not as strong as their topological counterparts. In particular uniform continuity is not a very strong property. But basically all properties of completeness can be carried over to uniform convergence spaces and equicontinuity is an even stronger c
板凳
發(fā)表于 2025-3-22 01:14:49 | 只看該作者
地板
發(fā)表于 2025-3-22 05:49:53 | 只看該作者
Hahn-Banach extension theorems,or subspace of . with the property that . ∩.. is closed in each .. - such a subspace is called stepwise closed. Further, let φ bea sequentially continuous linear functional on .. Does there exist a (sequentially) continuous linear extension to .? This is a difficult and much researched problem. Subs
5#
發(fā)表于 2025-3-22 12:29:36 | 只看該作者
6#
發(fā)表于 2025-3-22 14:20:32 | 只看該作者
The Banach-Steinhaus theorem,are locally convex topological vector spaces and . is barrelled, then every pointwise bounded subset of ?. is equicontinuous. This powerful theorem is used, for example to show that the pointwise limit of a sequence of continuous linear mappings is a continuous linear mapping. It is used as well to
7#
發(fā)表于 2025-3-22 19:09:47 | 只看該作者
Duality theory for convergence groups,ter group, i.e., the character group of its character group. Here each character group carries the compact-open topology. There are various generalizations of this result to not necessarily locally compact, commutative topological groups. Probably the first one was due to S. Kaplan who generalized t
8#
發(fā)表于 2025-3-23 00:48:56 | 只看該作者
9#
發(fā)表于 2025-3-23 02:52:53 | 只看該作者
10#
發(fā)表于 2025-3-23 06:47:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乾安县| 宽城| 阿勒泰市| 冷水江市| 赤壁市| 泽州县| 沂源县| 定西市| 拉萨市| 洪湖市| 洛宁县| 北票市| 太湖县| 临湘市| 武穴市| 福安市| 南汇区| 城市| 肇庆市| 长春市| 平安县| 武汉市| 奈曼旗| 福贡县| 张家口市| 永德县| 五莲县| 凤山市| 卢氏县| 白朗县| 丰县| 永福县| 利辛县| 改则县| 竹北市| 慈溪市| 蓝田县| 通榆县| 佳木斯市| 沾益县| 静乐县|