找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convergence Estimates in Approximation Theory; Vijay Gupta,Ravi P. Agarwal Book 2014 Springer International Publishing Switzerland 2014 Be

[復(fù)制鏈接]
樓主: FAULT
11#
發(fā)表于 2025-3-23 10:00:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:01:26 | 只看該作者
Vijay Gupta,Ravi P. AgarwalCovers general approximation methods on linear positive operators.Provides key results on study of convergence, its direct results, rate of convergence, and asymptotic behavior.Presents convergence in
13#
發(fā)表于 2025-3-23 21:31:00 | 只看該作者
http://image.papertrans.cn/c/image/237734.jpg
14#
發(fā)表于 2025-3-24 00:32:34 | 只看該作者
https://doi.org/10.1007/978-3-319-02765-4Bezier variant; approximation; bounded variation; convergence; linear combinations; linear positive opera
15#
發(fā)表于 2025-3-24 03:10:00 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:43 | 只看該作者
Some More Results on the Rate of Convergence,perators as special cases. They investigated their results for the classes of functions . [., .] and . [., .]. Also, Hua and Shaw [156] extended this problem for linear integral operators with a not necessarily positive kernel.
17#
發(fā)表于 2025-3-24 11:06:48 | 只看該作者
18#
發(fā)表于 2025-3-24 14:53:46 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:27 | 只看該作者
Vision-and-Language Pretraining for VQAperators as special cases. They investigated their results for the classes of functions . [., .] and . [., .]. Also, Hua and Shaw [156] extended this problem for linear integral operators with a not necessarily positive kernel.
20#
發(fā)表于 2025-3-25 01:46:45 | 只看該作者
https://doi.org/10.1007/978-981-19-2228-2ls. In more recent papers, some approximation properties of the Stancu-type generalization on different operators were discussed (see, e.g., [50, 133, 187, 238]). Future studies could address defining the Stancu-type generalization of other operators and the convergence behavior, asymptotic formulas
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白河县| 威宁| 济宁市| 介休市| 中宁县| 甘德县| 和田县| 宜都市| 太保市| 万全县| 吴川市| 廉江市| 永宁县| 汤阴县| 大关县| 奈曼旗| 揭东县| 佛教| 甘孜县| 昭觉县| 新竹市| 铜鼓县| 蓬溪县| 巴彦县| 靖安县| 长汀县| 鄢陵县| 贵阳市| 镇安县| 敦煌市| 海兴县| 怀柔区| 台南县| 当雄县| 纳雍县| 上思县| 伊川县| 张家界市| 台北市| 平塘县| 江口县|