找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convection with Local Thermal Non-Equilibrium and Microfluidic Effects; Brian Straughan Book 2015 Springer International Publishing Switze

[復(fù)制鏈接]
樓主: Fixate
51#
發(fā)表于 2025-3-30 08:33:05 | 只看該作者
Shramana Ghosh,Nina Robson,J. M. McCarthye discuss the problem of Poiseuille flow of a linear viscous, incompressible fluid in an infinite channel bounded by the planes . with the flow driven in the .direction by a constant pressure gradient ., but with boundary conditions of slip type. Furthermore, we consider the problem of instability o
52#
發(fā)表于 2025-3-30 16:19:13 | 只看該作者
https://doi.org/10.1007/978-3-030-20476-1g. Indeed, thermal convection in porous media is an area which is attracting much attention when the material properties are anisotropic. Since many real porous materials display strong anisotropy this focus of attention is natural. We describe a linear instability analysis together with a complimen
53#
發(fā)表于 2025-3-30 16:59:11 | 只看該作者
Matthias Walter,Vanessa Seitz,Klaus Benglerd in particular the nano-scale pore structure have been found to be important in other areas of fuel production, especially in coal. In the light of the many applications for bidisperse porous media, theories of fluid flow through a doubly porous body, or a bidispersive porous body, have been gainin
54#
發(fā)表于 2025-3-30 21:06:48 | 只看該作者
55#
發(fā)表于 2025-3-31 03:10:10 | 只看該作者
https://doi.org/10.1007/978-3-030-20503-4greater than those of a typical carrier fluid. Because of this the nanofluid suspension may have an increased thermal conductivity over that of the pure fluid, although the effects of changes to both the thermal conductivity and the viscosity should be considered together. One belief is that an incr
56#
發(fā)表于 2025-3-31 07:46:56 | 只看該作者
57#
發(fā)表于 2025-3-31 12:57:11 | 只看該作者
Introduction,different from the solid skeleton temperature, .. This situation where the two temperatures may be different is usually referred to as local thermal non-equilibrium, abbreviated to LTNE. One of the driving reasons for the increased attention of LTNE flows in porous media is the numerous amount of applications of this area in real life.
58#
發(fā)表于 2025-3-31 14:53:01 | 只看該作者
Book 2015rovides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 20:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
任丘市| 仁怀市| 大化| 宜兰市| 汶川县| 佳木斯市| 梨树县| 西和县| 罗田县| 临桂县| 金华市| 朝阳区| 酒泉市| 舟山市| 自治县| 桐城市| 恩平市| 泾川县| 连山| 克拉玛依市| 弥勒县| 松阳县| 紫金县| 岳阳市| 广西| 织金县| 克拉玛依市| 新疆| 镇康县| 白水县| 将乐县| 南丰县| 常宁市| 宕昌县| 江油市| 武隆县| 剑阁县| 尉氏县| 鹤壁市| 虎林市| 霍林郭勒市|